

Magazin für Amateurfunk Elektronik · Funktechnik

Elektronik-Service Dathe 04651 Bad Lausick Gartenstraße 2c Telefon (03 43 45) 2 28 49 Fax (03 43 45) 2 19 74 www.funktechnik-dathe.de email@funktechnik-dathe.de

Öffnungszeiten:

Montag bis Freitag 9 - 18 Uhr Samstag 9 - 12 Uhr Montag - Samstag täglich Postversand Stehen Sie im Stau. bleiben wir QRV! (Bitte kurzer Handyanruf)

Sie erreichen uns:

- Über die Bundesautobahn A 14 Abfahrt Grimma, dann noch ca. 15 Min.
- Über die Bundesautobahn A 4 Abfahrt Ronneburg oder Glauchau
- Mit der Bahn ab Leipzig-Hauptbahnhof in rund 18 Min.
- Von Leipzig A38, Abfahrt Leipzig-Südost, Richtung Grimma in etwa 25 Min.
- In Bad Lausick direkt am Bahnhof. Anfahrt-Tipps und aktuelle Informationen bei uns im Internet

Wir sind autorisierter Vertragspartner für:

- ALINCO
- ICOM
- KENWOOD

Außerdem führen wir Funkgeräte und Funkzubehör vieler anderer Hersteller und Importeure.

Antennenkabel-Service

- Neue und bewährte Kabeltypen, Stecker und Adapter ständig zu guten Preisen am Lager!
- Preiswerte Antennensteckerkonfektionierung!
- Keine Zuschläge für Mindermengen!
- Nur Porto für Versand!
- Werden Kabel bzw. Stecker bis 14 Uhr bestellt, erfolgt der Versand noch am gleichen Tag!
- Service aus Mitteldeutschland: Schnell und günstig!

Elektronik-Service seit 1.12. 1988

Dipl.-Ing. Reinhard Dathe

DLØKBL

DL2LVM Reinhard Dathe DG2LVM ·

DG1LQQ ·

DL7LVM Frank Dathe

DAS mitteldeutsche Amateurfunkzentrum: Ladengeschäft, Fachversand, Service ...

Das Magazin für Amateurfunk, Elektronik

und Funktechnik

Dipl.-Jur. Knut Theurich, DGØZB Herausgeber: Chefredakteur: Dr.-Ing. Werner Hegewald, DL2RD

Internet www.funkamateur.de Box 73 Amateurfunkservice GmbH Verlag:

Berliner Straße 69, 13189 Berlin Tel.: (030) 44 66 94-60 · Fax: -69

Abo-Verwaltung: Angela Burkert, Tel.: (0 30) 44 66 94-60 Abo@funkamateur.de

Dr.-Ing. Werner Hegewald, DL2RD (Amateurfunktechnik) Redaktion@funkamateur.de Redakteure:

Dipl.-Ing. Ingo Meyer, DK3RED (Elektronik/Computer) Elektronik@funkamateur.de Tel.: (030) 44 66 94-57

Wolfgang Bedrich, DL1UU

(Amateurfunkpraxis/QTC) *QTC@funkamateur.de* Tel.: (030) 44 66 94-54

Harald Kuhl, DL1ABJ

(Rundfunk/CB/Jedermannfunk) CBJF@funkamateur.de

Redaktion FUNKAMATEUR, Berliner Straße 69, 13189 Berlin Anschrift: Dipl.-Ing. Bernd Petermann, DJ1TO Fachberatung:

Postbox@funkamateur.de

Dipl.-Ing. Peter Schmücking, DL7JSP, Tel.: (030) 44 66 94-72, Shop@funkamateur.de Leserservice:

Ständige freie Mitarbeiter: M. Borstel, DL5ME, IOTA-OTC; Dr. M. Dornach, DL9RCF, DX-Berichte; J. Engelhardt, DL9HQH, Packet-QTC; Th. Frey, HB9SKA, Sat-QTC; F. Janda, OK1HH, Ausbreitung; P. John, DL7YS, UKW-QTC, E. Lang-re, DJ9ZB, DX-Infors, B. Mischlewski, DPZZC, UKW-QTC; P. Moniordis, HB9IQB, HB9-QTC; W.-D. Roth, DL2MCD, Unterhaltungselektronik/PC; F. Rutter, DL7UFR, Technik; Dr.-Ing. K. Sander, Elektronik; H. Schönwitz, DL2HSC, SOTA-QTC; C. Stehlik, OE6CLD, OE-QTC; M. Steyer, DK7ZB, Antennen; R. Thieme, DL7VEE, DX-QTC; A. Wellmann, DL7UAW, SWL-QTC; N. Wenzel, DL5KZA, QSL-Telegramm; H.-D. Zander, DJ2EV, EMV(U); P. Zenker, DL2FI, QRP-QTC

DFØFA, DF3R, DOK: FA Klubstation:

Druck: Möller Druck und Verlag GmbH, Ahrensfelde, OT Blumberg Vertrieb: ASV Vertriebs GmbH, Tel.: (040) 347-29287

Manuskripte: Für unverlangt eingehende Manuskripte, Zeichnungen, Vorlagen u. Ä. schließen wir jede Haftung aus. Wir bitten vor der Erarbeitung umfang-reicher Beiträge um Rücksprache mit der Redaktion – am besten telefonisch. Manuskripthinweise auf *www.funkamateur.de* unter "Mitmachen".

Kein Teil dieser Publikation darf ohne ausdrückliche schriftliche Genehmigung des Verlages in irgendeiner Form reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt, verbreitet oder im Internet veröffentlicht werden.

Haftung: Alle Beiträge, Zeichnungen, Platinen, Schaltungen sind urheberrechtlich geschützt. Außerdem können Patent- oder andere Schutzrechte vorliegen.
Die gewerbliche Herstellung von in der Zeitschrift veröffentlichten Leiterplatten
und das gewerbliche Programmieren von EPROMs usw. darf nur durch vom
Verlag autorisierte Firmen erfolgen. Die Redaktion haftet nicht für die Richtigkeit und Funktion der veröffentlichten Schaltungen sowie technischen Beschrei

bungen. Beim Herstellen, Veräußern, Erwerben und Betreiben von Funksende- und -empfangseinrichtungen sind die gesetzlichen Bestimmungen zu beachten. Bei Nichtlieferung ohne Verschulden des Verlages oder infolge von Störungen des

Arbeitsfriedens bestehen keine Ansprüche gegen den Verlag **Erscheinungsweise:** FUNKAMATEUR erscheint monatlich jeweils am letzten Dienstag des Vormonats. Inlandsabonnenten erhalten ihr Heft vorher.

Heftpreise beim Kauf im Zeitschriftenhandel: Deutschland 3,50, Euro-Ausland 3,80 €, Schweiz 6,90 CHF, Dänemärk 22 DKK, Polen 15 PLZ.

Inland-Abonnements mit uneingeschränkter Kündigungsmöglichkeit: 36,-für 12 Ausgaben (3,-/Heft), als PLUS-Abo 42,-.

Inland-Jahresabonnement für 12 Ausgaben 34,80 (2,90/Heft), als PLUS-Abo 40,80; Schüler/Studenten gegen Nachweis nur 29,80, als PLUS-Abo 35,80.

Jahresabonnement: Ausland für 12 Ausgaben 39,90, als PLUS-Abo 45,90; nach Übersee per Luftpost 72,-, als PLUS-Abo 78,-. Schweiz 69,- CHF, als PLUS-Abo 79,- CHF. USA \$ 39,90, als PLUS-Abo \$ 49,90.

PLUS-Abonnement: 12 Ausgaben plus Jahrgangs-CD jeweils 6,- Aufschlag. Die CD wird Ende Dezember mit dem Heft 1 des Folgejahrgangs geliefert.

Kündigungen von Jahresabonnements bitte der Box 73 Amateurfunkservice GmbH sechs Wochen vor Ablauf schriftlich anzeigen.

In den Abonnementpreisen sind sämtliche Zustell- und Portokosten enthalten. Preisänderungen müssen wir uns vorbehalten.

Bestellungen von Abonnements bitte an die Box 73 Amateurfunkservice GmbH oder online auf unserer Homepage *www.funkamateur.de*

Bankverbindung in Deutschland: Box 73 Amateurfunkservice GmbH Konto 659992108, Postbank Berlin, BLZ 10010010

Überweisungen aus dem Euro-Ausland: Box 73 Amateurfunkservice GmbH IBAN DE18 1001 0010 0659 9921 08, BIC (SWIFT) PBNKDEFF

Bankverbindung in der Schweiz: Box 73 Amateurfunkservice GmbH, Konto 40-767909-7, PostFinance, Währung SFr

Private Kleinanzeigen: Abonnenten können pro Ausgabe eine bis zu 200 Zeichen lange private Kleinanzeige kostenlos veröffentlichen, wenn diese **online** über www.funkamateur.de → Abo-Service beauftragt wird. Schriftlich an die Box 73 Amateurfunkservice GmbH, per Fax oder online über

www.funkamateur.de → Inserieren beauftragte private Kleinanzeigen bis zu 10 Zeilen mit je 35 Anschlägen kosten bei Vorkasse (Bargeld bzw. Kontodaten zum Bankeinzug) pauschal $5 \in$. Jede weitere Zeile kostet $1 \in$ zusätzlich.

Für den Inhalt der Anzeigen sind allein die Inserenten selbst verantwortlich. **Gewerbliche Anzeigen:** Mediadaten bitte beim Verlag anfordern oder als PDF-Datei von www.funkamateur.de/imp/FA_Media.pdf herunterladen. Zurzeit gilt die Preisliste Nr. 19 vom 1.1. 2009

Vertriebs-Nr. A 1591 · ISSN 0016-2833

Redaktionsschluss: 13.1.2009 Erstverkaufstag: 27.1.2009

43 800

Der FUNKAMATEUR wird weitgehend auf Recyclingpapier gedruckt

© 2009 by Box 73 Amateurfunkservice GmbH · Alle Rechte vorbehalten

Chapeau!

Welches sind denn eigentlich die herausragenden Leistungen im Dunstkreis unseres Hobbys? Sind es die 26.8 Mio. Punkte in einem Contest? Sind es 4933 Bandpunkte von 160 bis 10 m in drei Jahren? Ist es eine 47-GHz-Vorstufe im Eigenbau, die nur mit 0,2 dB rauscht? Welches sind denn die erdrutschartigen Amateurfunkereignisse, die uns vom Hocker hauen? Wovor sollten wir denn den Hut der Bewunderung ziehen?

Ich habe viele und dabei ganz triviale Dinge im Bereich unseres Hobbys gefunden, vor denen ich den berühmten Hut, genauer gesagt den Zylinder, ziehe. Wenn ich jemanden vergessen habe, ist das kein böser Wille. Dann ist es nur der Beweis dafür, dass es in Wirklichkeit noch viel, viel mehr schätzenswerte Mitstreiter gibt, die in ihrer kostbaren Freizeit sich und anderen einen Dienst erweisen. Also: Frisch ans Werk! Wer fällt mir da ein ...

Uli Bihlmayer, DJ9KR, und Wolf Hadel, DK2OM, an der Spitze der DARC-Bandwacht arbeiten fast rund um die Uhr für die Amateurfunkgemeinde. um unsere Bänder zu schützen und zu erhalten. Mit viel technischem und finanziellem Aufwand werden Bandplanverstöße identifiziert, dokumentiert und in Zusammenarbeit mit den nationalen und internationalen Aufsichtsbehörden zu unser aller Nutzen "behoben". Eine andere Gruppe von Amateuren stellt allen Unkenrufen zum Trotz das Packet-Radio-Netz den Amateuren zur Verfügung. Immer noch versorgt eine große Zahl von Digipeatern unsere Zunft mit DX-Cluster-Zugriff, wenn es keinen DSL-Anschluss im Shack gibt. Dann sind da die AATiS-Aktivisten, die nicht müde werden, auf Veranstaltungen Jugendliche für Technik zu begeistern ist das die Technik, die begeistert? Dann gibt es publizistisch Begabte, die eigene, kleine Periodika herausgeben und dabei ausgewählte technische oder betriebstechnische Themen anpacken, die für die großen Magazine zu speziell wären.

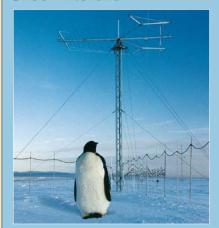
Eine andere Gilde von Enthusiasten hat sich der Entwicklung von Hardund dazu passender Software von Amateuren für Amateure verschrieben. Die Resultate können sich sehen lassen. Gleich, ob Netzwerktester oder Gigahertz-Technik aus dem Frankenland – es sind nahezu professionelle Lösungen, die Amateure entwickeln. Auch die QRPer unter dem Dach der QRP-AG haben sich mittlerweile europa-, ja weltweit mit Ihren Publikationen und Bausätzen einen Namen gemacht.

Hat sich schon einmal jemand überlegt, wie viele Stunden ihrer Freizeit die Auswerter unserer Conteste investieren, um die Ergebnislisten möglichst schnell und exakt zu erstellen? Und wer macht die "Arbeit" im OV? Da gibt es die guten Geister, die OV-Transceiver und Antennen reparieren, warten und verbessern, die das (hoffentlich noch vorhandene) OV-Heim in Schuss halten ...

Es ließen sich noch viel mehr Beispiele finden, die uns zeigen, dass unsere Gemeinschaft von Eifrigen getragen wird, die ihre Energie in den Dienst der Allgemeinheit stellen – ohne dafür bezahlt zu werden, und in vielen Fällen leider sogar, ohne dafür ein Dankeschön zu bekommen.

Deswegen ziehe ich immer wieder tief den Hut vor all diesen engagierten Kollegen, die mit ihrer Arbeit den Amateurfunk nicht nur am Leben erhalten, sondern auch nach vorn bringen.

Den Chapeau zieht Peter, DL7YS



Peter John, DL7YS

Amateurfunk		Aktuell	
Aktuelles von der Bandwacht	134	Editorial	119
UA4WHX: mehr als 300 000 Funkverbindungen aus Afrika		Postbox	122
Viele DXer kennen Vladimir Bykov,		Markt	126
UA4WHX, bereits von einem mehrmonatigen Pazifik-Trip. Sein jüngstes Funkabenteuer,		Literatur	129
das mehr als zwei Jahre währte, führte den weit gereisten DXpeditionär		Bezugsquellenverzeichnis	186
überwiegend auf den afrikanischen Kontinent. Von Mai 2005 bis zum Sommer 2007 meldete er sich aus		Ausbreitung Februar 2009	214
insgesamt 21 DXCC-Gebieten. Foto: UA4WHX	136	Inserentenverzeichnis	230
APRS-Stationen im Navigationsgerät anzeigen – geht denn das?		Vorschau FA 3/09	230
DISTRICTION DISTRI		QTCs AATiS e.V.	210
Das Navigationsgerät geosat 5 Blu APRS zeigt im Zusammenwirken mit einem APRS-fähigen Mobilfunkgerät von Kenwood nicht nur die eigene aktuelle Position, sondern auch die Position anderer APRS-Stationen an.	440	DX-QTC	218
Screenshot: DL7UFF Einfache UHF-Taktoszillatoren für DDS-Synthesizer	168	SX8	F
CTCSS-Decoder und -Encoder zum Nachrüsten		Wifere Adve meets Hamradi	nture io
POSCH GGCO		IOTA-QTC	219
Für die Nachrüstung älterer Transceiver oder Relaisfunkstellen eignet sich die hier vorgestellte Baugruppe,	170	QSL-Telegramm	220
die sowohl CTCSS-Töne erzeugen als auch auswerten kann, um so die		QSL-Splitter	221
Öffnung des Squelchs des Funkgeräts durch einen Anrufer zu ermöglichen.		SOTA-QTC; Packet-QTC	222
Hochfrequenzleistungsmesser für 100 kHz bis 3,3 GHz (1)		QRP-QTC	223
Trocinic quenzie i stançante sacritar 100 km² bis 0,5 dm² (1)		SWL-QTC; Sat-QTC; CW-QTC	224
Der hier beschriebene HF-Leistungs- messer, der konsequent auf Batterie-		D-STAR-QTC	225
SMA 1 stromversorgung ausgelegt ist, zeigt nicht nur die Leistung, sondern		UKW-QTC	226
auch Dämpfung, Verstärkung und Hochfrequenzspannung auf einem Display numerisch an.		Diplome	227
Die Messung selbst erfolgt durch einen Messkopf, der fertig gekauft		DL-QTC; Afu-Welt	228
oder selbst gebaut werden kann. Foto: DM2DSN	177	OE-QTC; HB9-QTC	229
80-m-Vertikalantenne mit Spiderbeam als Dachkapazität	184	Termine Februar 2009	230
A25/DL7DF: eine Amateurfunk-DXpedition nach Botswana			
Antarktisprogramme im Internationalen Polarjahr	217	<i>Beilage</i>	
Fieldday Dobl	225	DJ-175E	175

150

Unser Titelbild

Die Aufnahme zeigt die Log-Periodic-Richtantenne Rohde & Schwarz AK471, die von 1992 bis 1994 an der Antarktisforschungsstation Neumayer II für den Kurzwellenfunkverkehr verwendet wurde, zusammen mit einem "neugierigen" Kaiserpinguin.

Foto: Dr. Volker Strecke, DL8JDX

BC-DX

Kurzwelle in Deutsch 212
BC-DX-Informationen 213

Mit dieser QSL-Karte bestätigt Radio HCJB Empfangsberichte über Sendungen in DRM und SSB. QSL: HKu

Wissenswertes

HDTV und Flachbildschirme:
Was ändert sich
im Wohnzimmer? 130
Was Sie schon immer
über Kondensatoren

Bauelemente

wissen wollten (5)

KT925: Silizium-HF-Leistungstransistor in Epitaxie-Planar-Technologie 173

Geschichtliches

Licht und Kraft in deutschen Haushalten

Funk

Rundfunk auf Umwegen: UKW-Empfang aus Neuseeland

BC-DX-Empfang einmal anders: Über einen per Internet gesteuerten Empfänger kommt das NF-Signal einer UKW-Station aus Neuseeland nach Europa.

Screenshot: DL1ABJ 132

Ergebnisse der Umweltstudie vom Januar 2008 sind irrelevant! 139
Kommunikationsempfänger Palstar R30A 142
Satellitenbeobachtung mit OrbcommPlotter 144
Vom Bit zur Multiträgermodulation – digitale Modulationsverfahren 146

GSM-Box – einfache Steuerung mit Mobiltelefontechnik (2)

Der abschließende Teil dieses Beitrags zeigt anhand einiger praktischer Beispiele auf, wie sich die in den Mobilfunknetzen eingesetzten GSM-Module auch in eigene Projekte integrieren lassen.

Sicher sprechen beim Mobilfunk 185
CB- und Jedermannfunk 211

Elektronik

DCF77-gesteuertes Frequenznormal mit Funkuhr und Sternzeit (3)

Wärmeerzeugung und Kühlung

Milli- und Mikroohmmeter-Zusatz für Digitalvoltmeter

162

Einsteiger

158

Wissenswertes über Transistoren	156
KW-Antennen für den Einstieg (3)	182

165

Foto: DL5IN

Redaktion FUNKAMATEUR Postfach 73, 10122 Berlin postbox@funkamateur.de

Zu fest geklebt

Der FUNKAMATEUR lag immer pünktlich im Briefkasten und hatte jeden Monat interessante Beiträge für mich. Mit der Berichtigung der verklebten Seite der Januar-Ausgabe (siehe www.funkamateur.de → News/Jahrgangs-CD zu gut angeklebt) gab es eine Betreuung der Leser bis hin zum letzten Buchstaben.

Otto Hellwig, DJ2YD

Berechnungen leicht gemacht

Unter www.sengpielaudio.com/ Berechnungen.htm finden sich Dutzende von Be- und Umrechnungshilfen für Ton- und Audiotechnik, Geometrie sowie allgemeine physikalische Größen. Selbst bei einfachen Berechnungen ist man mit diesen Werkzeugen schneller, als wenn man erst anderswo nach irgendwelchen Umrechnungskoeffizienten sucht; Favorit/Lesezeichen zum schnellen Aufruf sei deshalb empfohlen.

Miniaturisierung

Als unser Sohn Pim am 1. Januar geboren wurde, habe ich endlich verstanden, warum Yaesu seine Geräte immer kleiner macht! Thijs Has, PE1RLN

Eagle-Versions-Problem

Ich möchte den QRP-Transceiver aus FA 1/02 und 6/02 nachbauen, doch leider lassen sich die Dateien im Downloadbereich mit meiner Eagle-Version nicht öffnen. Auch die TIF-Dateien lassen sich nicht anzeigen. Welche Programme sind notwendig? Oder sind die Files schon veraltet?

Walter Weiser, DL2SEW

TIF-Dateien lassen sich mit dem Windows-Bordmittel Paint (ab XP) öffnen und drucken (Start → Programme → Zubehör...), s. u. a. FA 12/08, S. 1263. Auch die Windows Bild- und Fax-Anzeige beherrscht TIFs. Daraus lässt sich das Bild in einem anderen Dateiformat speichern (Diskettensymbol). Ebenso und vielleicht sogar besser geeignet ist die Freeware IrfanView, www.irfanview.de.

Bei den Eagle-Dateien wurde leider das Dateiformat von den 3er-Versionen zur 4er-Reihe geändert. Die Dateien zu diesem Projekt wurden aber in der damals modernen Version 3.xx erstellt, wobei die Version 3.55 zum Öffnen der Dateien geeignet ist. Ältere Versionen von Eagle gibt es zwar bei Cadsoft *ftp://ftp.cadsoft.de/eagle/program*, doch leider gehört keine 3er-Version dazu. Die Version 3.55R3 (Lite) inklusive Dokumentation ist auf der FA-Jahrgangs-CD 2000 unter Extras enthalten, die Version 3.5 Demo auf der CD 1996. Eagle Light, Version 4.11, gibt es auf der FA-Jahrgangs-CD 2003 – zu H. 10, S. 978.

Achten Sie beim Installieren darauf, der alten Version einen Extrapfad zuzuweisen, um die Versionen zu unterscheiden, z. B. C:\Programme\CADSOFT\EAGLE355\. Also nicht den vorgeschlagenen Pfad verwenden, sonst überschreiben Sie bei der Installation die vorher installierte Version.

Afu-Karneval

Ein Funkamateur aus Lindenthal wurde in Köln einst Prinz Karneval, doch anstatt Kamelle warf er nur QSLe und sorgte so für nen Skandal.

© Manfred Maday, DC9ZP

Notfunk im Amateurfunk

So sehr Beiträge zum Thema "Notfunk" auch zu begrüßen sind, so wenig hilfreich ist der Beitrag "Konzept zur Errichtung eines Notfunknetzes in DL" im FA 1/09. Wenn sich die Ausführungen im FA 12/08, S. 1348, "Notfunk Deutschland e. V. stellt sich vor", weitgehend mit den Vorstellungen anderer Notfunkgruppen decken, so baut das im FA 1/09 vorgestellte technische Konzept leider nicht auf den Rahmenbedingungen in Deutschland auf. Bei einem bundesweiten Notfunkkonzept sind neben der Technik vor allem auch folgende Punkte zu berücksichtigen: Der rechtliche Rahmen, die Akzeptanz bei den Beteiligten (Behörden und Funkamateuren), das operative Um-

Aus unserer Serie Gegensätze: blau und türkis

"Von dieser CD auch eine Kopie mit Durchschlag, Fräulein Rita!" Zeichnung: Achim Purwin

feld, der personelle Aufwand und die erforderlichen finanziellen Mittel.

Für die Sicherheit der Bevölkerung sind in der Bundesrepublik Deutschland die Behörden und Organisationen mit Sicherheitsaufgaben (BOS) zuständig. Funkamateure und ihre Vereine gehören nicht dazu und haben folglich auch keine entsprechenden Sonderrechte. Deshalb achten die Notfunkbeauftragten im DARC darauf, dass Amateurfunk und BOS-Funk personell und räumlich getrennt bleiben. Amateurfunk kann dabei selbstverständlich keine Leitfunktion übernehmen. Das vorgestellte Konzept des Notfunk Deutschland e. V. stößt bei den Sicherheitsbehörden überwiegend auf Ablehnung.

Ein behutsameres Vorgehen wäre für unser gemeinsames Ziel, den Notfunk bei den BOS zu etablieren, meines Erachtens besser geeignet, um die gewünschte breite Akzeptanz zu erreichen. Vielleicht sei noch ein Blick auf die Website "Notfunk in Berlin" www.darc.de/distrikte/d/notfunk empfohlen.

Michael Becker, DJ9OZ

Notfunkbeauftragter im Distrikt Berlin des DARC

Sehen wir es vielleicht im Sinne des Editorials 12/08 doch etwas positiver: Es führt *nicht nur ein Weg* zum Ziel

Speiseleitung einrechnen

Ich weiß nicht, wie oft ich mich im vergangenen Jahr über dumme Kommentare geärgert habe, wenn ich in PR oder in einem Forum eine in meinen Augen vernünftige Frage stellte. Dass das auch anders geht, haben mir einige OMs gezeigt, als e in Beispiel möchte ich hier Karsten, DL8LBK, nennen. Mein Problem: Ich nutze eine Multiband-Delta-Loop nach HB9ADQ (Rothammel), gespeist mit einer Hühnerleiter. Welche Impedanz hat nun die Hühnerleiter/das System unmittelbar vor dem Antennenabstimmgerät? Das kann schon wichtig sein, wenn man eines plant.

Karsten machte mich auf das Programm unter www. ac6la.com/tdetails.html aufmerksam, eine EXE-Datei, die entpackt fast intuitiv zu bedienen ist. Man muss nur die Impedanz seiner Antenne kennen (Mmana, EZNEC usw.), die Länge und die Art der Speiseleitung (koaxial oder Hühnerleiter), und schon geht es los. Es mag nicht so genau wie eine echte Messung sein, doch ausrei-

chend ist es allemal. Ich jedenfalls habe mich über die Hilfe der antwortenden OMs mehr als gefreut.

Klaus Bethge, DL8OL

Hingewiesen sei auch noch auf drei FA-Beiträge von Gerd Janzen, DF6SJ, zu diesem Thema: Antennenmessung durch Speiseleitung – geht das denn überhaupt? FA 9/00, S. 995; Speiseleitung an einer Antenne – wie simulieren? FA 1/04 und 2/04, S. 44 und 153; Entwurf realer Speiseleitungen mit EZNEC, FA 12/04, S. 1224. und 1/05, S. 20.

Der tut doch nichts

Portabel aus dem Bleiakkumulator

Kann man z. B. den IC-7200 portabel an einem 12-V-Bleiakkumulator (etwa 60 Ah) betreiben? Als Spannungsversorgung sind laut Datenblatt 13,8 V ±15% (11,7...15,87 V) gefordert. Wenn man die Ausgangsleistung auf etwa 50 W begrenzt, würde dann solch ein 60-Ah-Bleiakkumulator einige Stunden Betrieb ermöglichen? Ich weiß nur, dass ich meine Auto-Starterbatterie nach einigen Jahren erneuern muss. Dumm wäre, wenn man einen Spannungswandler zwischenschalten müsste, weil der den Wirkungsgrad der Stromversorgung mindert.

Helmut Kellermann, DJ2IP

Ich habe einige Transceiver auch bezüglich ihrer Betriebsspannungsabhängigkeit getestet, den IC-7200 allerdings nicht. Die Grenze lag dabei meist deutlich unter 11 V. Bei einigen Geräten fiel die Ausgangsleistung mit der Betriebsspannung recht stark ab.

Bei Bleiakkumulatoren unterschreitet die Spannung 12 V bei mäßigem Entladestrom etwa nach Entnahme von knapp der halben Kapazität, 11 V aber erst bei etwa 90 % davon! Als Entladeschlussspannung eines Bleiakkumulators gelten 10,5 V (1,75 V je Zelle). Bei 50 W Sendeleistung dürfte die maximale Stromaufnahme des Geräts so um die 12 A liegen. Unter Berücksichtigung des Sende/Empfangs-Zyklus und der Tatsache, dass bei CW und SSB ja nicht dauernd Oberstrich gemacht wird, sollte man schon etliche Stunden mit einer 60-Ah-Batterie arbeiten können.

Gerade bei geringer Versorgungsspannung sind kurze, dicke Leitungen zum Akkumulator besonders wichtig, sonst gehen durch den Spannungsabfall an den Zuleitungen noch etliche Zehntel Volt verloren, sodass der Transceiver dann beim Senden streikt, obwohl er bei Empfang noch tadellos funktioniert. Zu geringe Betriebsspannung kann in Verbindung mit dem ja bei höherem Sendestrom steigenden Spannungsabfall auch zu einer Art Kippschwingungen à la Wagnerscher Hammer führen, was dem Transceiver auf Dauer bestimmt nicht behagt.

Für die problemlose Nutzung eines Bleiakkumulators zur Speisung eines Transceivers spricht auch der Betrieb diverser kleinerer DXpeditionen, IOTA-, Leuchtturm-Aktivierungen usw. Informative Quellen zu den Eigenschaften von Bleiakkumulatoren stellen www. yuasa-battery.co.uk/industrial/downloads/NPManual-pdf. zip und www.elektrotec-berlin.de/technik/html/seite1.htm dar

Bernd Petermann, D.I1TO

Alle Jahre wieder

Bei der immerhin schon zehnten Weihnachts-Preisfrage galt es wieder, im abgelaufenen FA-Jahrgang zu blättern und die Gemeinsamkeiten der je vier auf den QSL-Splitter-Seiten des Jahrgangs 2008 (außer August) abgebildeten QSL-Karten herauszufinden. Die Liste der Übereinstimmungen sollte dann der nachstehenden mehr oder weniger geähnelt haben:

Januar: südliche Strände, Sicht aufs Meer,

alles IOTA

Februar: Svalbard bzw. Spitzbergen (JW)

März: Vietnam (3W)

April: Merket Riff (OJ0, OF0) mit seinem Leuchtturm

Mai: Inseln des Azoren-Archipels (CU),

erhöhte Sicht

Juni: tropische Strände mit Palmen

(alles IOTA),

jeweils mit einem Zusatzmotiv tropische Strände (ITU-Zone 11)

Juli: tropische Strände (ITU-Zone 11 mit Palmen im Vordergrund September: buddhistische Tempelanlagen,

Pagoden, in (Süd-)Ostasien

Oktober: Berge auf den Kanarischen Inseln,

QSLs von deutschen Funkamateuren

(EA8/D...)

November: QSLs von deutschen Funkamateuren

auf Rhodos (SV5/D...)

Dezember: Kamele/Dromedare

Interessant, dass jemand die Motiv-Unterschiede zwischen Juni und Juli herausfand und etlichen OMs die Zone 11 im Juli auffiel (allerdings stand das auch auf drei der Karten). Selbstverständlich gab es andererseits allerlei Irrtümer: So befindet sich TI8II an der Pazifikküste von Costa Rica, folglich trifft für den Juli "Karibik" nicht zu.

Die 3 × 25 € für die treffendsten Antworten erhalten:

Ronny Lorenz, DK4RL Christian Meewes, D01NCM Klaus Rohrbach, D05AWE

Herzlichen Glückwunsch!

Bildschirm-Preisfrage

Welche Gesamt-"Bildschirmgröße" haben zwei nebeneinander gestellte 19"-Monitore des 4:3-Formats, wenn man ihre Rahmen außer Betracht lässt?

Unter den Lesern mit richtiger Antwort verlosen wir

3 × 25 €

Einsendeschluss ist der 28.2.09 (Poststempel oder E-Mail-Absendedatum). Die Gewinner werden in der Redaktion unter Ausschluss des Rechtswegs ermittelt. Wenn Sie die Lösung per E-Mail übersenden (an *quiz@funkamateur.de*), bitte nicht vergessen, auch die "bürgerliche" Adresse anzugeben, sonst ist Ihre Chance dahin.

Auch an der Farbscheiben-Preisfrage vom FA 1/09 können Sie sich noch bis zum 31.1.09 versuchen. Ist eigentlich gar nicht sooo schwer. Dazu braucht es doch nur ein wenig räumliches Vorstellungsvermögen, Grundkenntnisse der Farbmischung – und überhaupt keine Mathematik!

Funk, Netzwerkkabel und Glasfaser statt PLC!

Fortschritt statt vermüllter Äther!

Antarktis-Aktivitätswoche 16. bis 22. 2. 2009

Elektronikring 1, 26452 Sande Telefon: 04422-955 333 Telefax: 04422-955 111

Der Technik-Sortimenter

Große Auswahl an Komponenten

Komponenten für den professionellen Einsatz auf www.reichelt.de!

Panasonic. Elko in SMD-Bauform

- · Low ESR / 10 µF
- 105°C / 1.000 5.000 h

VF 10/35 K-C

0.13 €

EURO QUARTZ Oszillatoren

- Keramikgehäuse
- · HCMOS / 3,3 V / 15 pF

XO91 16,00000

MEDER SMD-Reed-Relais, 150 Ω

. 0,5/0,5 A DC od. ACpeak / 5 VDC

· flaches Keramikgehäuse

CRR 05-1A

5.45 €

 SSOP-28 / Single Chip USB Asynchr. Serial Data Transfer

FT 232 RL

4,35 €

AMIDON Eisenpulver-Ringkern

- Ø a: 12.7 / Ø i: 7.7 / Ø h: 4.83 mm
- AL µH/100Wda: 49 / max. 30 MHz

0.61 €

Ferritkern für Rundkabel, 5 mm

· zum nachträglichen Aufbringen auf die Leitung bei Störungen

FERRITRING 5,0

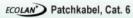
0.92 €

LSA-PLUS®-Tool

- · zum Einlegen & Abschneiden
- · Anlegewerkzeug mit Sensor

LSA TOOL KRONE

32,50 €



19"-Patchpanel, Cat. 6+, 24 Ports

· LSA-Schneid-Klemm-Technik, vollgeschirmt

PATCHPANEL 6-24

39,95 €

- · PiMF (paarig in Metallfolie)
- · 600 MHz / grau / 1,0 m

PATCH-C6 1 GR

0,95€

PeakTech®

2-in-1-LAN-Tester

mit Digital-Multimeter

- · Übertragungs- und Empfangssender
- · Überprüfung von Kabeldurchgang, Open-, Short- und Cross-Connect
- · misst Spanunng, Strom, Widerstand

PEAKTECH 3365

Bitset in Rolltasche

"Kraftform Kompakt 62", 33-teilig

- · 1x Handhalter mit Schnellwechselfutter
- · Bits: 3x PH-Kreuzschlitz, 3x PZ-Kreuzschlitz, 7x Torx, 6x Hexagon, 1x Schlitz, 3x Torg, 4x Tri-Wing, 4x Spannerbit

WERA KOMPAKT 62 71,75 €

Isoliert, 0,5 - 2,5 mm²

- Inhalt: 50 x 0.50 weiß. 100 x 0,75 grau, 100 x 1,00 rot, 100 x 1.50 schwarz. 50 x 2.50 blau
- · DIN-Farbcode

AEH SORTIMENT 2

5.40 €

Schraubendreher

Micro-Satz, 15-teilig

- Schlitz: 1.0x 40/2.0x 40/3.0x 40
- Kreuzschlitz: PH 0-3x 40/PH 0x 40/PH 1-2x 40
- Torx: T5x 40/T6x 40/T8x 40/T10x 40/T15x 40
- · 6-kant: 1,5x 40/2,0x 40/2,5x 40/3,0x 40

PROXXON 28148

26.10 €

Seitenschneider

Super-Knips "64HRc", 125 mm

- · Spezial-Werkzeugstahl, brünierter Kopf
- · Präzisionsgeschliffene Schneiden zum flächengleichen Trennen
- Schneiden zusätzlich induktiv gehärtet

KN 78 61 125

15.20 €

Crimpzange

Selbsteinstellend, 0.08 - 10 mm²

- · Fronteinführung, zum DIN-gerechten Verpressen von Aderendhülsen
- Vierkantprofil = größere Kontaktflächen
- Länge: 190 mm

KN 97 53 08

124.65 €

Markenware führender Hersteller im 24h-Versand!

reichelt.de

Anzeigenforum: www.explore.reichelt.de

Endoskop-Kamera Die Kamera, die um die Ecke schaut

Wasserdichte Endoskop-Kamera für den handwerklichen Einsatz im Sanitär-. Elektro- oder Kfz-Bereich.

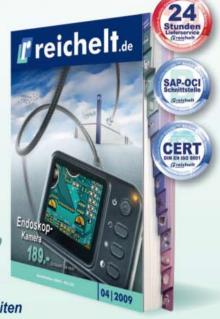
NEU! Katalog 04|2009

Jetzt anfordern. Kostenlos!

Bauelemente Messtechnik. Werkstattbedarf

Akkus, Lader, Batterien

Haustechnik, Sicherheit


Kommunikation, Büro PC-Technik

SAT - TV. Audio - Video

 über 30.000 Artikel im 24h-Versand

mehr als 1.500 Neuheiten

998 Seiten

LCD-Grafikdisplay

Mit Intelligenz - eDIP-Serie

- · 4.7"-Touchscreen, 240 x 128 Pixel
- · integrierte Schriften, ausgefeilte Grafikfunktionen
- · pixelgenaue Positionierung
- Modul-/Displaymaße: 113 x 70 x 12 / 96 x 61 mm
- Schnittstellen: RS-232, SPI und I²C

LCD EDIP240B7TP

149,95€

EtherCon-Steckverbinder

RJ-45-Stecksystem

- · Metall-Steckergehäuse zur Aufnahme eines fertig konfektionierten Cat. 5-Kabels mit RJ45-Modularstecker
- · für raue Umgebungsbedingungen
- · optimale Zugentlastung
- · Verriegelungsschutz in Verbindung mit den Chassisbuchsen

NEUTRIK NE-8MC Steckergehäuse 2,60 €

NEUTRIK NE-8FDP RJ-45 auf RJ-45 8,40 €

ALPS

Inkremental-Drehimpulsgeber

Typ ,,STEC12E", 11 mm

- · Printmontage, Snap-In-Ausführung
- Metallschaft: Ø 6 x 20 mm, abgeflacht
- Encoder: 0.5 mA / 5 VDC
- Taster: 1 mA / 5 VDC
- · Schaltweg: 0,5 mm
- · 24 Impulse / 24 Rastungen

STEC12E08 Drehimpulsgeber 2,95 €

KNOPF 10-150E Ø 10 x 15 mm 0,70 €

Qualitätsprodukte, Top-Service, günstige Preise!

Katalog 04 2009 kostenios!

Bestellhotline: 04422 - 955 333

Mehr als 30.000 Artikel auf 998 Seiten, über 1.500 Neuheiten!

Preisstand: 14. 1. 2009 Tagespreise: www.reichelt.de

Der Elecraft-Stationstransceiver K3 ist in Europa über QRPproject sowohl als Bausatz als auch fertig aufgebaut und getestet erhältlich.

K3

KW- und 6-m-Transceiver

- Frequenzbereiche: 160 m ... 6 m alle Amaturbänder RX mit BPF3-Option: 500 kHz... 30 MHz und 48 MHz...54 MHz
- 30 MHz und 48 MHz... 54 MHz Betriebsarten: AFSK, AM, CW, FM, FSK, SSB; RX: Interne Decodierund Anzeige von CW, PSK31, RTTY; TX: PSK31, RTTY via PC-Tastatur
- Sendeleistung:
 0,1...100 W PEP (K3/100)
 0,1...12 W PEP (K3/10)
 bei AM und auf 6 m reduziert
 Antennenkoppler: integriert
- (Option) ● Antennenanschlüsse: 1/2 × SO239, 1 × BNC (Option KRX3)
- PC-Anschluss: 1 × RS232
 Stromversorgung: 13,8 V =
 25 A (K3/100) bzw. 5 A (K3/10)
- ∆f: ± 5 ppm (0°... 50 °C)
 Harmonische, Nebenwellen und Träger < −50 dBc @ 100 W
- Träger ≤ -50 dBc @ 100 W

 IMD3: typ. 100 dB

 @ 5, 10 und 20 kHz
- Empfindlichkeit MDS: –136 dBm;
 –143 dBm @ 6 m mit PR6
- RX-ZF: 8,215 MHz, 15 kHz
 DSP-Einheit: 32-Bit-Gleitkomma-CPU mit DNR, ZF-Sift, High Cut/ Low Cut, Rauschreduktion, Kerb-
- digitaler Sprachrecorder (Option)
 Dual-VFO mit zwei Drehknöpfen

filter. Equalizer

- Dual-vFO mil zwei Drenknopien
 Abmessungen (B × H × T): 282 mm × 112 mm × 300 mm inklusive Bedienelementen
- Masse: 3,8 kg (ohne Zweit-RX)
 Preise: ab 1580 € (Bausatz K3/10)
 bzw. ab 2198 € (Bausatz K3/100)

Die Kreuzklemme CP 300/x ist in unterschiedlichen Versionen lieferbar, wobei der Boom-Durchmesser von 30 bis 65 mm und der Drehrohrdurchmesser von 50 bis 95 mm reichen können. Preise: 83,20 € bis 108 €

K3 kommt aus Berlin

"Die Ergebnisse sind beeindruckend. Über alles gesehen steht der Empfänger auf Augenhöhe mit den besten Radios, die je in unserem Labor vermessen wurden, und es ist der erste Empfänger, bei dem wir jemals über 100 dB IM-Dynamik bei schmalem Messabstand gemessen haben." – Das schreibt das ARRL-Testlabor über den K3, den neuen Stationstransceiver des US-amerikanischen Herstellers Elecraft, der sich bisher mit Bausätzen einen hervorragenden Ruf erworben hat.

Das von Praktikern für Praktiker entwickelte Gerät enthält alles, was man von einem modernen Transceiver erwartet, wobei sowohl eine 10-W- als auch eine 100-W-Version erhältlich sind.

Vertrieb und Service für Europa liegen wieder in den bewährten Händen von *QRPproject*, wo neben dem K3-Bausatz auch ein Aufbauservice angeboten wird. Für einen vergleichsweise geringen Mehrpreis erhält man dann ein fertig aufgebautes und getestetes Gerät mit zweijähriger Europa-Gewährleistung. Dank modularem Aufbau lassen sich von der Grundversion bis zur absoluten Contest-Maschine sehr individuelle Konfigurationen zusammenstellen. Telefonische Beratung im Vorfeld erfolgt durch Peter Zenker, DL2FI. *QRPproject, Molchstr. 15, 12524 Berlin, Tel.* (030) 85 96 13 23, Fax -24; www.qrpproject.de E-Mail: info@qrpproject.de

Klemmen im XXL-Maßstab

Neu bei **UKW-Berichte** gibt es eine extra große und sehr solide Boomklemme **CP 300/x** für KW-Beams oder schwere Eigenbau-Antennenkonstruktionen. Die Grundplatte aus 8-mm-Aluminium ist mit 300 mm × 300 mm extra groß und bietet Platz für jeweils vier Edelstahlbügel in jeder Ebene. Auf Wunsch können auch noch die Gegenschellen durch Krallenschellen aus Edelstahl ersetzt werden, wodurch dann sämtliche Teile rostfrei sind.

Diese große Boomklemme eignet sich beispielsweise zur Instandsetzung älterer Beams oder einfach zum Austausch der oft zu kleinen Boom-Mast-Klemme gegen eine deutlich größere und robustere Version.

UKWBerichte, Jahnstraße 7, 91083 Baiers dorf, Tel. (09133) 7798-0, Fax -33; E-Mail: info@ukwberichte.com; www.ukw-berichte.de

Viel Neues aus Herxheim

Mit der **ML-40HP** ist jetzt eine 100-W-Version der bekannten Portabel-Loops von **G4TPH** erhältlich, die von 20 m bis 40 m einsetzbar ist. Im Gegensatz zu den QRP-Loops ML-20/ML-40, die einen Ferritübertrager zur Einkopplung nutzen, verwendet diese Hochleistungsversion eine Gamma-Anpassung. Um die Abstimmung auf Resonanz zu erleichtern, wurde eine LED als Abstimmhilfe vorgesehen, die leuchtet, sobald die Antenne auf der Sendefrequenz resonant ist und ein SWV von s ≤ 1.5 aufweist.

Genauso wie die ebenfalls lieferbaren 15-W-Versionen der Portabel-Loop (ML-20 für 20 bis 10 m, 113 €; ML-40 für 40 bis 20 m, 118 €; Kombi-Version für 40 bis 10 m, 199 €) kommt die ML-40HP ohne Antennentuner sowie ohne Gegengewicht aus.

Von *Diamond* gibt es jetzt einen leichten, pfiffigen Aluminium-Teleskopmast *AM385*, der ausgezogen 3,8 m hoch ist und ein sehr universelles Kopfstück besitzt: Daran lassen sich beliebige Vertikalantennen oder Yagis anklemmen; ferner ist eine Aufnahme passend für Diamond-Einbausätze oder beliebige PL-Buchsen vorhanden, sodass sich Mobilantennen montieren lassen. Nach Abschrauben des Halteblechs kommt schließlich ein 1/4"-Stativgewinde zum Vorschein, welches auch Foto- oder Videokameras aufnimmt.

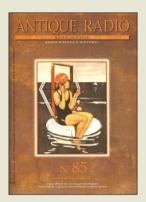
Die drahtlose Kopfhörer-Mikrofon-Kombination **B-250** bietet selbst in lauter Umgebung hohe Sprachqualität, da das Mikrofon Hintergrundgeräusche wie Fahrgeräusche, Wind usw. reduziert. Mit dem flexiblen Schwanenhals lässt es sich zudem optimal positionieren. Das Headset wird als Zubehör zu **Talksafe**, einer Bluetooth-Freisprecheinrichtung für Mobil- oder Handfunkgeräte, angeboten, kann jedoch auch mit anderen Bluetooth-fähigen Geräten wie Telefonen, Computern usw. zusammenarbeiten.

Bezug: WiMo GmbH, Am Gäxwald 14, 76863 Herxheim, Tel. (07276) 96680, Fax 966811, www.wimo.com, E-Mail: info@wimo.com Von G4TPH gibt es jetzt auch eine portable Magnetschleifenantenne mit 100 W Belastbarkeit

ML-40HP

Zerlegbare Schleifenantenne

- Bänder: 20 m bis 40 m
- Belastbarkeit: 100 W SSB, CW
 Masse: 1,2 kg
- Schleifendurchmeser: 1,5 m
- Preis: 319 €


Der aus drei Sektionen bestehende 3,8-m-Portabelmast AM385 weist eine Transportlänge von nur 1,45 m auf, wiegt 1,2 kg und ist inklusive Stoffsack und Abspannseilen für 98 € erhältlich.

Die Sprechzeit des Bluetooth-Headsets B-250 beträgt ungefähr 10 h, die Stand-by-Zeit etwa 100 h. Zwei Ladegeräte für 230 V und für 12-V-Kfz-Steckdose sind im Preis von 99 € inbegriffen.

Markt-Infos

Die Marktseiten informieren über neue bzw. für die Leserschaft interessante Produkte und beruhen auf von der Redaktion nicht immer nachprüfbaren Angaben von Herstellern bzw. Händlern.

Die angegebenen Bezugsquellen bedeuten keine Exklusivität, d. h., vorgestellte Produkte können auch bei anderen Händlern und/oder zu anderen Preisen erhältlich sein. *Red. FA* Auf dem BAZ VM-DX B2 lassen sich optional erhältliche Ferritmodule drehbar aufstecken; die Stromversorgung erfolgt stationär mit 12 V bzw. mobil mit 4,5 V.

Dank reicher Bebilderung auch für Italienisch-Muffel ein Gewinn: Magazin des Club Antique Radio. Mosè Edizioni, Via Bosco 4, 31010 Maser, Italien; E-Mail: info@edimose.it www.antiqueradio.it

kurz und knapp

geosat 5 APRS ohne Blu
Das APRS-taugliche Navigationssystem geosat 5 APRS ist ab Februar 09 bei WiMo auch in einer Version ohne Bluetooth-Schnittstelle für 399 €

www.wimo.com

TH-F7E funkt länger

erhältlich.

Kenwood liefert das 2-m-/70-cm-Handfunkgerät TH-F7E ab sofort bei gleichem Preis mit einem 2000-mAh-Akkumulator (bisher 1500 mAh) aus. www.kenwood.com

Der Line Extender ist nur um ein Netzwerkkabel passender Länge zu ergänzen, um mit USB bis zu 60 m zu überbrücken.

Peilen auf tiefen Frequenzen

Speziell für den Empfang von Nutzsignalen sowie für die Lokalisierung von Störquellen im unteren Frequenzband von 20 kHz bis 2 MHz entwickelte **BAZ** ein neues peilfähiges Empfangssystem mit der Bezeichnung VM-**DX B2**. Es besteht aus einem aktiven Grundverstärker (Preis: 259 €) für den Anschluss von Leistungs-Ferritmodulen, die drehbar aufgesteckt werden können. Der Unterschied zum bisherigen verfügbaren Modul (VM-DX B) besteht im Einsatz eines doppelten Operationsverstärkers mit Impedanzanpassung sowie hoher einstellbarer Verstärkung bis 28 dB. BAZ Spezialantennen, Lessingstr. 21 d, 76867 Bad Berzabern, Tel. (0 63 43) 61 07 73, Fax (0721) 151503063; E-Mail: info@spezial antennen.de, www.magnet-ferritantennen.de

Funkempfang via Internet

Ausgabe 37 von **funkempfang.de** stellt u. a. den KW-Empfänger Palstar R30A vor und berichtet über neue Komfortfunktionen bei Handscannern. Dazu gibt es einen Antennenvergleich zwischen einem Langdraht und einer Loopantenne LA380.

Das eMagazin erscheint achtmal pro Jahr im PDF-Format. Ein Jahres-Abo kostet 12 €, die Einzelausgabe 2 €; der Bezug erfolgt über die Website, wo auch Probeexemplare zum kostenfreien Herunterladen bereitstehen.

RMB Dieter Hurcks, Tel. (05136)896460; www.funkempfang.de

Lange USB-Leitung

Normalerweise beträgt die maximale USB-Kabellänge nur 5 m. Mit dem **Line Extender** für 24,90 € von **Pearl** sind jetzt bis zu 60 m überhaupt kein Problem mehr: Einfach ein Netzwerkkabel in der gewünschten Länge dazwischen stecken und die beiden Teile der Verlängerung per USB mit Gerät und Rechner verbinden. Die Stromversorgung des integrierten Verstärkers erfolgt via USB-Schnittstelle. Lediglich ein Standard-LAN-Kabel Cat 5e der gewünschten Länge ist zusätzlich erforderlich.

Bezug: Pearl Agency Allgemeine Vermittlungsgesellschaft mbH, Pearl-Str. 1-3, 79426 Buggingen, Tel. (0 76 31) 36 0-2 00, Fax -444; www.pearl.de

Neues aus dem Leserservice

Den FA-Leserservice erreichen vermehrt Fragen zu der in Vorbereitung befindlichen neuen Serie des FA-Netzwerktesters FA-**NWT01U**. Der wesentliche Unterschied besteht darin, dass bereits von vorn herein ein USB-Anschluss integriert ist und der DDS-Chip stets mit 400 MHz getaktet wird. Während die 80/400-MHz-Option BX-062 ein 400-MHz-Helixfilter enthielt, übernimmt dessen Funktion nun ein Oberflächenwellenfilter. Da die komplette RS232-Schnittstelle entfällt, wurde die Erzeugung der negativen Hilfsspannung für den Breitband-OPV anders gelöst. Die technischen Parameter der neuen Serie entsprechen denen der bisherigen Netzwerktester mit 80/400-MHz-Option. Die Schnittstelle für die Zusatzbaugruppen, wie schaltbares Dämpfungsglied und zweiter Messdetektor, ist unverändert geblieben.

Die USB-Version des FA-NWT01 (*BX-060-U*, 199 €) beinhaltet das interne Abschirmkit. Eine Variante mit aufgebauter und geprüfter Platine sowie Reflexionsmesskopf wird für 265 € erhältlich sein (*BX-069-U*). Die ursprünglich für Ende Februar vorgesehene Auslieferung der Bausätze kann sich verzögern, da inzwischen ein Lieferantenengpass erkennbar ist – Bausatzvorbestellungen sind aber möglich.

Bezug: FA-Leserservice, Berliner Str. 69, 13189 Berlin, Tel. (030) 44 66 94-72, Fax -69; www.funkamateur.de, shop@funkamateur.de

Röhren historisch betrachtet

Die Buchreihe Röhrenhistorie von Wolfgang Scharschmidt wird nun im Funk Verlag Hein erscheinen, da sich der EPV-Verlag aus dem Projekt zurückgezogen hat. Die Bände werden zu den gleichen Preisen wie angekündigt, jedoch um ein halbes Jahr verschoben, herausgegeben (Band 1 im April 2009). Die Lieferung aller Bücher erfolgt portofrei. Da eine Weitergabe der Adressen nicht statthaft ist, werden Interessenten, die schon beim EPV-Verlag vorbestellt haben, gebeten, nochmals beim Funk Verlag Hein bzw. der Fachbuchhandlung Hein & Sohn zu bestellen. Letztere übernimmt die Auslieferung. Das gilt auch für Bestellungen über den Buchhandel beim EPV-Verlag.

Weitere Angaben und Probeseiten sind unter www.roehren-historie.de verfügbar.

Funk Verlag Bernhard Hein e.K., Elisabethstr. 16 b, 06847 Dessau-Roßlau, Tel. (0340) 5 41 22-10, Fax -17; www.funkverlag.de Serienreifer Prototyp des neuen FA-NWT01U, hier noch ohne Abschirmungen

Mit diesem neuen Katalog wendet sich Icom an professionelle Kunden, die Funklösungen im Betriebsfunk- oder PMR-Bereich suchen. Bemerkenswert ist das darin vorgestellete Icom Digital Advanced System IDAS – offenbar das kommerzielle Pendant zu D-STAR. www.icomeurope.com

Die Röhrenhistorie umfasst 2416 Seiten in fünf Bänden im Hardcover mit Halbleineneinband.

Röhrenhistorie

Buchreihe

- Band 1: Zeitgeschichte, Technologie, Codierungen, Lexikon
 Band 2: Firmenportraits
- Band 2: Firmenportraits
 Band 3: Max Funke und seine
- Röhrenprüfgeräte

 Band 4: Deutsche Wehr-
- machtsröhren

 Band 5: Brands, Signets, Tech-
- nische Daten

 Preise: Band 1 110 €
 Band 2 90 €
 Band 3 90 €
 Band 4 90 €
 Band 5 120 €

Band 1 bis 5 zusammen 440 €

Das zum Lieferumfang des Lyric TI24 gehörende separate Netzteil lässt sich sowohl unter den Verstärker, wie hier zu sehen, als auch neben ihm postieren.

Lyric TI24

Vollverstärker

- Frequenz:
- 20 Hz ... 20 kHz @ 2 dB Ausgangsleistung: 2 × 12 W
- Lautsprecherimpedanz: 4/16 Ω
- Klirrfaktor: < 1%
- Fremdspannungsabstand. > 93 dB
- Eingangsimpedanz: 250 kΩ
- Empfindlichkeit: 0,1 ... 0,5 V
- Eingänge: CD, Aux, USB
- Ausgänge: Lautsprecher,
- Kopfhörer Leistungsaufnahme: 100 W
- Abmessungen $(B \times H \times T)$. 162 mm × 155 mm × 115 mm
- Masse: 7 kg (inkl. Netzteil)
- Preis: 998 €

Die bidirektionale Fernbedienung des WAP-2200 gestattet die Steuerung der Basisstation und die Darstellung von Informationen zum Musikstück.

Der iPod nano ist in sieben Farben erhältlich.

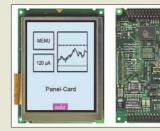
Mini-Röhrenverstärker

Cavin produziert ihren Röhrenvollverstärker Lyric T124 nun auch in Schwarz. Wie von der weiß-grauen Edition gewöhnt, bilden der USB-Eingang mit integriertem D/A-Umsetzer und die Stereo-Cinch-Buchsen auf der Rückseite die Schnittstellen zur Analogwelt. Eine Kopfhörerbuchse ist zusätzlich auf der Frontseite verfügbar.

Hersteller: Cayin Audio Distribution GmbH, Am Weiherhaag 3, 65779 Kelkheim, Tel. (061 98) 57 38-06, Fax -08; www.cayin.com, E-Mail: info@cavin.com

Bezug: Fachhandel

Kabellos Musik hören


Für alle Musikfans, die ihre digitale Musiksammlung vom USB-Stick oder der Audio-Festplatte hören wollen, bietet Teac den WAP-2200 als Einstiegsmodell an. Er gestattet den komfortablen Zugriff auf die Sammlung via bidirektionaler Datenfunk-Fernbedienung: Auf dem farbigen LC-Display werden alle Zusatzinformationen angezeigt, die sonst nur am Player selbst ablesbar sind. Die Gapless-Funktion erlaubt die unterbrechungsfreie Wiedergabe aufeinander folgender Musikstücke. Weiterentwicklungen sind der WAP-4500 und der WAP-8500. Beide ermöglichen das kabellose Audio-Streaming vom PC und können auf Internet-Radiosender zugreifen, wobei Letzterer ein Touch-Display aufweist.

Hersteller: Teac Europe GmbH, www.teac.de Bezug: Fachhandel

Schütteln erbeten

Der iPod nano von Apple wartet mit einem Speicher von 8 bzw. 16 GB, einem abgerundetem Gehäuse und vielen zusätzlichen Funktionen auf: Das Drehen schaltet z. B. das Displayformat um, während beim kräftigen Schütteln die Zufallswiedergabe aktiviert wird. Mittels Genius lassen sich außerdem zueinander passende Titel aus der Mediathek wiedergeben. Integriert wurde auch eine Blätterfunktion für Alben u. v. m. Der Player ist ab 149 € erhältlich.

Bezug: Apple Store, Deutschland Tel. 08 00-2 00 01 36, Österreich Tel. 08 00-20 10 37, www.apple.de

Modul mit ARM9-Controller

Die von taskit entwickelte Panel-Card auf Basis eines ARM9-Controllers ist ab sofort mit einem transflektivem TFT-Display erhältlich, das selbst bei Sonnenlicht oder in hellen Räumen kontrastreiche Darstellungen ermöglicht und auch ohne Hintergrundbeleuchtung betrieben werden kann. CPU-Modul und Display sind im Sandwich-Format miteinander verbunden und bilden so eine kompakte Einheit. Über das Tastdisplay sind einfach und intuitiv Bedienungen realisierbar, wobei der Anwender über selbst programmierte Texte in der Menüsteuerung geführt wird. Mit dem freien Betriebssystem Linux 2.6.x und dem funktionsreichen Bootloader U-Boot erhält man zudem eine sichere Softwarelösung.

Bezug: taskit GmbH, Seelenbinder Str. 33, 12555 Berlin, Tel. (0 30) 61 12 95-0, E-Mail: info@taskit.de, www.taskit.de

Lernpaket Brennstoffzelle

Franzis bietet das Lernpaket Experimente mit der Brennstoffzelle an, mit dem sich die Funktion dieser relativ neuen Technologie in Versuchen kennen lernen lässt. Bezug: Franzis Verlag GmbH, Gruber Str. 46a, 85586 Poing, Tel. (081 21) 95-0, Fax -1696; www.franzis.de

Kompletter RFID-Receiver

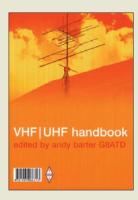
Der **SF6108** von **SFChip** ermöglicht die Decodierung von RFID-Tags nach dem EM1402-Standard, wobei als Beschaltung des ICs nur wenige Bauteile nötig sind. In der Standardschaltung kann der IC als Kernstück eines einfachen Türöffners dienen, bei welchem bis zu 100 RFID-Tags registriert sein können. Alle decodierten Tags (auch nicht registrierte) werden im ASCII-Code an der eingebauten RS232-Schnittstelle ausgegeben der Chip erkennt selbstständig, ob ein PC oder Microcontroller angeschlossen ist. Zehn Befehle gestatten das Programmieren der Einund Ausgänge, das Lesen/Setzen von Pins, die Abfrage des Umsetzers und die Programmierung des ICs. Zum Trimmen des Schwingkreises ist eine Abgleichfunktion eingebaut, die sich per Jumper aktivieren lässt. Weitere Informationen bietet die Hersteller-Website. SFChip, Römerstr. 53, 41238 Mönchengladbach, Tel. (0 21 66) 91 39 511, Fax -512; www.sfchip.de, E-Mail: sfchip@sfchip.de

Das Farbdisplay der Panel-Card ist kontrastreich mit und ohne Hintergrundbeleuchtung nutzbar.

Panel-Card

CPU-Modul mit Display

- CPU: ATMEL AT91SAM9261,
- ARM926EJ-S-Kern, 240 MHz
 Speicher: 32 MB SDRAM (optional 64 MB), 16 MB Flash (optional bis 256 MB), 256 Byte EEPROM
- Anschlüsse: 4 × USART, 2 × SPI, TWI (I²C), SD/MMIC-Card, USB 2.0 Full Speed (12 MBit/s), 2 × USB-Host, USB-Device, Ethernet 100 MBit, JTAG/ICE
- Display: 3,5", 240 × 320 Pixel, Farhe
- Betriebssystem: Linux 2.6. Bootloader U-Boot, Java Virtual Mashine (JamVM)
- Betriebsspannung: 3,3 V Starterkit: Panel-Card. 64 MB Flash, 64 MB SDRAM, Evaluationboard, Matrix-Tastatur (3 x 4 Tasten), Drehgeber mit Druckschalter, Kabel, Software-CD-ROM
- Abmessungen (B × H): 95.5 mm × 70 mm
- Preis pro Stück: ab 249 € Starterkit 799 €



Mit dem für 49,95 € erhältlichen Lernpaket lassen sich 18 Experimente rund um die Brennstoffzelle durchführen. Die einzelnen Bauteile sind darüber hinaus auch für andere Projekte nutzbar.

SF6108

RFID-Receiver

- RFID-Norm nach EM4102
- Frequenz: 125 kHz ■ ID · 40 Rit
- Ausgang: RS232, ASCII, 4800...57 600 Bd
- einfache Außenbeschaltung • 16 GPIO-Ports, 6 Kanäle,
- 10-Bit-A/D-Umsetzer
- Gehäuse: DIL, 28-polig Preis: ab 6.75 €

Barter, A. (Ed.), G8ATD: VHF/UHF handbook

Ein Buch, das in umfassender Form in die VHFund UHF-Technik (Frequenzbereich 30 MHz bis 3 GHz) einführt, gibt es offenbar derzeit nicht in deutscher Sprache. So gesehen lohnt also durchaus der Blick über den Teich. Im vorliegenden Buch hat Andy Barter, ein erfahrener Fachmann auf diesem Gebiet, Material aus vielen internationalen gedruckten sowie im Internet veröffentlichten Publikationen zusammengestellt. Nicht zuletzt konnte er als Herausgeber und Verleger der VHF Communications, der britischen Schwester der UKW-Berichte, aus einem riesigen Fundus schöpfen. So verwundert es nicht. Beiträge von bekannten Autoren wie DJ8DW, DJ8ES und YU1AW vorzufinden.

Nach einer Einführung und Tipps für die ersten Schritte folgt ein sehr ausführliches Kapitel über Ausbreitung, das durch zahlreiche Formeln und Diagramme beeindruckt und den Rezensenten begeisterte.

Weiter geht es mit Sendern, Empfängern, Transceivern, Antennen und HF-Leitungen über EMV-Probleme hin zu speziellen Themen wie Digimodes, ATV, Satellitenkommunikation, Relaisfunkstellen sowie Messtechnik. Ein umfassender Anhang nebst einem Index runden das Werk ab. Hilfreich sind ferner die vielen Nomogramme sowie zahlreiche Platinenlayouts. -rd

RSGB Potters Bar 2007 312 Seiten, 23,50 € FA-Leserservice *R-6318*

Sauter, M.: Grundkurs Mobile Kommunikationssysteme

Ein Mobilfunk-Handy nutzt heutzutage nahezu jeder FA-Leser, und was eine SIM-Karte ist, braucht man kaum jemandem zu erklären. Dann hört es jedoch schnell auf, denn wer es wirklich genau wissen will, wie GSM, GPRS, UMTS, aber auch WLAN und Bluetooth funktionieren, wird von gängiger populärwissenschaftlicher Literatur ziemlich im Dun-

Literatur ziemlich im Dunklen gelassen – auch der FA kann nur ansatzweise auf diese speziellen Techniken eingehen.

Sauer trägt dem Rechnung und bietet im vorliegenden Werk, das im Hinblick auf rasante Veränderungen innerhalb von fünf Jahren bereits in dritter Auflage erscheint, praxis- und detailgerechtes Wissen zu mobilen Kommunikationssystemen. Er führt klar und verständlich in die Technik und praktische Umsetzung der Gesamtheit mobiler Kommunikationstechniken ein, wobei gerade die Zusammenfassung in einem Buch den Wert ausmacht. Anhand vieler Beispiele wird fundiertes Wissen vermittelt und aufgezeigt, welche Möglichkeiten und Grenzen die unterschiedlichen Konzepte haben. Das Verständnis der kom-

Das Verständnis der komplizierten Zusammenhänge setzt fundierte mathematisch-physikalische Kenntnisse voraus, dennoch ermöglichen die klare Struktur sowie die verständliche Sprache auch Nicht-Fachleuten einen Zugang. -rd

Vieweg Verlag Wiesbaden 2008 424 Seiten, 34,90 € ISBN 978-3-8348-0397-9

Gieseke, W.: Die ultimative Vista-Bibel

Die Komplexität von Microsofts jüngstem PC-Betriebssystem stellt hohe Ansprüche, auch an Funkamateure und Elektronikbastler. Auf fast 1000 Seiten vermittelt Data Beckers Vista-Bibel mehr als nur das Know-how für die Benutzung. Vielmehr hilft sie den Nutzern, das volle Potenzial von Vista zu entfalten und bei eventuellen Systemfehlern nach den Ursachen zu forschen, richtige Diagnosen zu stellen und Probleme zu beseitigen. Darüber hinaus erfährt man, wie sich mithilfe von Registry, Richtlinien und Diensten das Betriebssystem detailliert steuern lässt. Die sichere Verschlüsselung von Dokumenten und Laufwerken, die externe Steuerung des PCs oder die Synchronisation von Terminen und Kontakten mit mobilen Geräten sind weitere Themen in diesem kompetenten Ratgeber.

Der Abschnitt PC-Tuning kommt ebenfalls nicht zu kurz: Wie lässt sich die Leistungsfähigkeit des PCs erhöhen oder welche Rolle spielt der Auslagerungsspeicher? Ausführlich widmet man sich auch klassischen Anwenderthemen, die den Nutzer so oft nerven können: störrische Hardware, hartnäckige Treiberprobleme oder unerklärliche Konfigurationsprobleme. Sämtliche Themen sind verständlich aufbereitet und übersichtlich zusammengefasst. Screenshots illustrieren Praxislösungen, Schritt-

Data Becker Düsseldorf 2008 976 Seiten, 29,95 € ISBN 978-3-8158-3023-9

für-Schritt-Anleitungen sind

ebenso hilfreich.

Kiencke, U.; Jäkel, H.: Signale und Systeme

Das vorliegende Studienbuch wendet sich kompakt und gleichzeitig verständlich an Studenten der Fachrichtung Elektrotechnik an wissenschaftlichen Hochschulen sowie an Ingenieure und Naturwissenschaftler, die einen Einblick in dieses Gebiet gewinnen wollen.

Zur Nutzung dieses Buches sind zwar ein gewisses Grundwissen in der Elektrotechnik. gute Kenntnisse in der höheren Mathematik, der Wahrscheinlichkeitsrechnung und Grundkenntnisse in der Fourier- und Laplace-Transformation Voraussetzung, doch erweist es sich als wertvolle Quelle für das Selbststudium oder als Ergänzung für Vorlesungen zu dem Gebiet Signale und Systeme.

In den mathematischen Grundlagen wird der Begriff des Hilbert-Raumes eingeführt, auf dessen Basis anschließend Gesetzmäßigkeiten aus dem euklidischen Vektorraum auf den Funktionenraum übertragen werden können. Bei den Transformationen geht es um deren wichtigste Eigenschaften in praktischen Anwendungen. Dabei wird die Fourier-Transformation üblicherweise auf Signale, die Laplace- und z-Transformation auf Systeme angewendet. Die Signale und Systeme werden dabei zuerst im kontinuierlichen und dann im diskreten Zeitbereich betrachtet.

Oldenbourg Verlag München 2008 4. Auflage 424 Seiten, 29,80 € ISBN 978-3-486-58734-0

-red

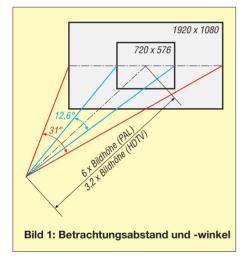
N.N.: Elektronik für Einsteiger

Wer die immer stärkere Verbreitung der Rechentechnik in Form von Computern und Mikrocontrollern betrachtet, wird sich fragen, ob denn ein solches Buch, das verstärkt die Analogtechnik behandelt, noch aktuell ist.

Es ist! Zum einen ist die Theorie und der praktische Aufbau analoger aber auch digitaler Schaltungen sehr hilfreich und zum anderen ist es auf diesem Wege möglich, sich die unschätzbaren Erfahrungen und ein gehöriges Maß Elektronik-Grundwissen anzueignen.

Apropos Grundkenntnisse: Dieses Buch enthält nicht nur Schaltungsvorschläge in Form eines Kochbuchs, sondern auch eine Reihe Beiträge, die die theoretischen Grundlagen einer Schaltung verständlich beschreiben. Dadurch ist es nicht nur für Elektronik-Einsteiger geeignet, sondern auch für all diejenigen, die sich aus beruflichen Gründen in die Materie einarbeiten möchten

Aus dem reichhaltigen Inhalt seien nur die folgenden Gebiete erwähnt: Wissenswertes über Strom und Spannung, Elektrizität und Magnetismus, Kondensatoren und Spulen, Halbleiter, praktische Schaltungen für Labor und Werkstatt, Oszillatoren, synthetische Klänge, Musikelektronik, Audioschaltungen, Optoelektronik, Haus- und Hofelektronik, Hochfrequenz, Spezial-ICs. -red


Elektor-Verlag Aachen 2008 308 Seiten, 34,80 € ISBN 978-3-89576-207-9

HDTV und Flachbildschirme: Was ändert sich im Wohnzimmer?

Dipl. Ing. WOLF-DIETER ROTH - DL2MCD

Flachbildschirme für Fernseher werden immer größer und flacher. Doch wie groß ist für HDTV groß genug und wie gehen Fernsehfachleute mit den neuen Bildschirmen um?

Dipl.-Ing. (FH) Friedrich Gierlinger vom Institut für Rundfunktechnik (IRT) [1] lieferte den Mitgliedern der Technisch-Literarischen Gesellschaft TELI [2] einen technischen Vergleich der unterschiedlichen Bildschirmtechnologien. Dies aus der Sicht eines Ingenieurs, der am IRT die "Produktionssysteme Fernsehen" betreut und so täglich mit Sendebetrieb, Farbtemperaturen und Studiotechnik zu tun hat. Früher wurde am IRT echte Hardwareentwicklung betrieben, so Friedrich Gierlinger, da hätte man sich vielleicht sogar selbst mal einen Bildschirm-Prototyp ge-

baut und diese Entwicklung später der Industrie angedient. Heute, im SMD-Zeitalter, nimmt allerdings dort niemand mehr so gerne einen Lötkolben in die Hand (es gibt Ausnahmen wie den Selbstbau eines DAB-Senders für nur 300 € durch den Funkamateur Deti Fliegl, DG9MHZ), doch sind dem IRT immer noch Softwareentwicklung und Normung verblieben.

■ Historie der Bildschirmtechnik

Ab 1926 wurde die Braunsche Röhre zum Fernsehen genutzt; ab 1935 gab es in Deutschland regelmäßige Fernsehübertragungen, wenn auch mit überschaubarer Empfängerzahl. 1938 entwickelte Werner Flechsig die Schattenmaskenröhre, auf der alle Farbbildröhren aufbauen. Die ersten Farbbilder wurden regulär 1953 via NTSC (benannt nach dem *National Television Systems Committee*, engl., nationales Fernsehsystem-Komitee) in den USA übertra-

gen. Nach Deutschland (West) kam das Farbfernsehen als PAL (engl. *Phase Alternating Line*, zeilenweise wechselnde Phase) von Walter Bruch weiterentwickelt 1967, in die DDR als SECAM (frz. *SÉquentiel Couleur À Mémoire*, zeilenweise gespeicherte Farbe) 1969 pünktlich zu deren 20. Jahrestag.

Allerdings waren bereits 1939 auf der Funkausstellung in Berlin Farbfernsehbilder gezeigt worden, die Bildschirmtechnik war also bereits da. Die Verzögerungen beruhten auf dem Problem, Farbsignale so auszustrahlen, dass sie zu Schwarz-Weiß-Geräten kompatibel sind und die Farbsignale halbwegs stabil empfangen – bei NTSC war dies noch nicht der Fall, weshalb die Abkürzung häufig mit "Never the same color" (engl. niemals die gleiche Farbe) assoziiert wurde.

Die Bildröhre, ob als Loch- oder deutlich preisgünstigere, doch nicht immer wirklich bessere Streifenmaske, blieb dann jedoch, von Detailverbesserungen abgesehen, unverändert. Sie dominierte ungeachtet des *Eduard-Rhein-*Preises, der dem Erfinder des ersten Flachbildschirms ausgehändigt werden sollte, 70 Jahre lang die Fernsehtechnik. Erst in den letzten Jahren vor der Jahrtausendwende kam wieder Leben in die Entwicklung der Fernsehbildschirme, die nun doch noch flach wurden.

Damit wurde HDTV realisierbar, dessen frühere Versuche in Deutschland neben dem Problem hoher Kosten für die Übertragung vor allem mangels geeigneter Bildschirme versandet waren: Ausgesuchte Bildröhren schafften zwar HDTV-Auflösung, hatten jedoch nicht die für eine komfortable Betrachtung von HDTV-Aufnahmen adäquate Größe – man hätte sich sehr dicht an das Fernsehgerät setzen müssen, um etwas von der höheren Auflösung zu haben.

■ Erste Flachbildschirme

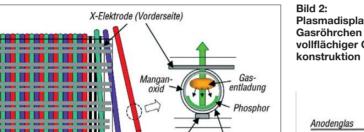
1967 wurde der erste funktionsfähige *Plasmafernseher* an der Universität von Illinois konstruiert, ebenfalls 1967 entstand das erste LC-TV-Display im RCA-Labor – ursprünglich sind LCD eine deutsche Entwicklung. 1973 startete die LCD-Serienfertigung bei Sharp in Osaka. Doch erst 1992 brachte Fujitsu das erste Farb-Plasmadisplay von 21 Zoll Bildschirmdiagonale auf

den Markt. Heute gilt dies für einen Fernseher als eher klein, für einen Computerbildschirm bereits als gängig und wurde als LCD realisiert, während Plasmabildschirme nunmehr erst bei 37 Zoll beginnen. Für die Sendeanstalten ist der Wechsel der Bildschirme jedoch nicht trivial: Das ganze technische System von Farbräumen, Farborten der Leuchtstoffe und Gammakurven ist auf Bildröhren zugeschnitten. Zwar bieten Flachbildschirme längst den Bildröhren adäquate Bildqualität, doch kann ein TV-Signal heute nicht mehr rein auf Röhrenempfänger ausgelegt werden: Bald werden diese in der Minderheit sein.

Betrachtungsabstand und -winkel bei verschiedenen Fernsehnormen für 42 Zoll Bildschirmdiagonale (H = 60 cm)					
Zeilen	Abstand [m]	Blickwinkel [°]			
576 (PAL)	3,66	12,6			
720 (HDTV) 2,93	21			
1080 (Full H	D) 1,95	31			

In den USA sind die Fernseherkäufer ziemlich gnadenlos: So groß wie möglich muss das Bild sein, der Rückprojektionsfernseher am besten die halbe Wohnzimmerwand ausfüllen, obwohl infolge der gerade mal 525 Zeilen des dortigen Fernsehsystems und der nach Abzug der dunklen Zeilen der Austastlücke praktisch resultierenden Auflösung von 640 × 480 Pixeln nur noch verschwommene Bilder bleiben. Der oft mangelhafte Übertragungsstandard in den USA tut sein Übriges: Kabelgesellschaften liefern nicht selten Signale, die bei uns selbst beim terrestrischen Fernempfang kaum akzeptiert würden. HDTV stieß daher auf fruchtbaren Boden.

■ Für HDTV: näher dran – oder größer


In Deutschland sind die Übertragungsstandards deutlich gestiegen, seit es Satelliten-Direktempfang gibt, und mit 625 Zeilen (netto 576) ist unser Übertragungsstandard gar nicht so weit weg von den 720 Zeilen der "kleineren" HDTV-Norm mit 1280 × 720 Pixeln. Die Fernseher waren im 4:3-Röhrenzeitalter zudem nie größer als 67 oder maximal 72 cm Bildschirmdiagonale (28 Zoll). Für HDTV war da wenig Bedarf: Das Bild flimmerte zwar unangenehm mit 50 Hz statt den 60 Hz der USA, doch unscharf war es eigentlich nicht.

Um den Qualitätsgewinn von HDTV überhaupt wahrnehmen zu können, ist näher an den Fernseher heranzurücken, als dies bislang empfohlen wurde – oder ein größeres Gerät anzuschaffen. Bild 1 und die Tabelle zeigen den empfohlenen Betrachtungsabstand für ein Gerät mit 42 Zoll Bildschirmdiagonale (vor einigen Jahren noch

ein "Monster", ohne Flachbildschirmtechnik oder Projektion nicht vernünftig machbar) bzw. 60 cm Bildhöhe in PAL und den beiden europäischen HDTV-Normen. Mit Full HD und 1080 Zeilen ist dieser gerade noch halb so groß wie bei PAL; der Betrachtungswinkel steigt auf fast das Dreifache.

Damit ist der Zuschauer nun "mitten drin. statt nur dabei", das Erlebnis nähert sich dem Kino an bzw. übertrifft dieses sogar noch, da die Filmwiedergabe in Kinos oft suboptimal eingestellt ist, die bei HDTV in Europa stets digitale Übertragung dagegen kaum eine Chance für Unschärfen lässt. Dadurch steigt natürlich auch die Dominanz des Fernsehers im Wohnzimmer – und der Anspruch an das Display.

stolze 3500 € lieferbar sein soll, und einen 27-Zoll-OLED-Prototyp. Samsung präsentierte gar einen OLED-Fernseher mit 31 Zoll als Prototyp und will 2009 immerhin ein 17-Zoll-Gerät wirklich liefern können, die angekündigten Preise liegen iedoch noch im fünfstelligen Bereich.

Die Winkelabhängigkeit von LC-Displays macht sich bei 31° Betrachtungswinkel eher bemerkbar als bei den 12,6° einer konventionellen Fernsehübertragung. Bei 31° Betrachtungswinkel definierte Farborte über die gesamte Bildfläche einzuhalten ist nicht Quellen: trivial, auch wenn die Hersteller gerne Fan-SID-Symposium tasiezahlen wie 179° möglichen Betrach-

Plasmaröhrchen

Y-Elektrode (Rückseite)

■ Plasmabildschirme: Gewichtsfrage

tungswinkel angeben.

3 mm Pixelabstand

Plasmabildschirme werden dagegen mit durchaus realisierbaren großen Diagonalen monströs schwer, da sie das zum Betrieb genutzte Edelgas zwischen dicken Glasscheiben halten müssen. Ein Panasonic-Display mit 108 Zoll wiegt 225 kg, bei dem Modell mit 150 Zoll sind mindestens 500 kg zu erwarten, was die Schlagzeile "Millionär von Fernseher erschlagen" [3] gar nicht so absurd klingen lässt. Plasmabildschirme, die kleine Gasröhrchen enthalten statt der bisherigen flächigen Konstruktionen, sollen zukünftig Abhilfe schaffen.

Eine andere Entwicklung sind 100-, 200-, 300- oder gar 600-Hz-Displays. Hier geht es nicht wie einst bei der Röhre um das Vermeiden von Großflächenflimmern, sondern um das Vermeiden von Unschärfe. Allerdings wird dazu teilweise die Hintergrundbeleuchtung von LCDs getaktet, wo-

Bild 3: FED: verschleißanfällige Kaltkatoden-Spitzenentladung

Glasröhrchen

(Ø 1mm)

Plasmadisplay mit Gasröhrchen statt vollflächiger Glas-

mit sich dann doch wieder vielleicht nicht

wahrnehmbares, doch augenstressendes

Selbst leuchtende OLED-Bildschirme sind

möglicherweise energieeffizienter als LCD

und Plasma und vom Material her prinzi-

piell billiger in der Herstellung; bislang

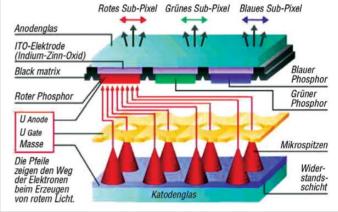
liegt der Fertigungsausschuss iedoch noch

bei etwa 90 % und die Lebensdauer der

Sony zeigte mit dem XEL-1 immerhin ein

11-Zoll-Gerät auf der IFA, das 2009 für

Großflächenflimmern einschleicht.


Displays ist noch unzureichend.

Die einst hoch gelobte Lasertechnik ist dagegen erfolglos geblieben: Gaslaser sind zu teuer, und bei Halbleiterlasern soll ausgerechnet der Rotlaser eine unzureichende Lebensdauer haben. Zudem sind Laserdisplays für Brillenträger optisch unangenehm, da die einzelnen Farben zu sehr dispergieren.

■ Kalte "Verkaufseinstellung"

Ein Problem ist allerdings die Praxis der Gerätehersteller, Displays für den besseren Verkauf im Laden nicht auf eine Farbtemperatur von 6500 K, sondern auf 10 000 K, 12 000 K und mehr zu justieren: Die kalten Farben wirken schärfer, doch mit natürlicher Wiedergabe hat dies nichts mehr zu tun.

Die EBU (European Broadcasting Union) hat daher im September 2007 die Richtlinie TECH 3321 zusammengestellt, die von den Geräteherstellern fordert, den Kunden eine "EBU-Einstellung" anzubieten, mit der sie den Fernseher, wenn sie ihn schließlich dank des für den Verkauf

■ Gescheitert: SED, FED, Laser

2008

Die von der Röhre abgeleiteten Flachdisplaytechnologien SED (engl. Surface-Conduction-Electron-Emitter-Display, Oberflächenleitung-Elektronenemissionsanzeige) [4] und FED (engl. Field Emission Display, Feldemissionsanzeige) sind dagegen bislang wenig erfolgreich: Während Toshiba SED dafür zuvor extra eingeladenen Journalisten gar nicht erst zeigen wollte [5], leidet FED unter unerwartet starkem Verschleiß der anstelle konventionell geheizter Katoden bei 1 kV Elektronen spendenden Kaltkatoden-Nadeln.

Das von Texas Instruments vermarktete DLP (engl. Digital Light Processing, digitale Lichtverarbeitung) mit beweglichen Mikrospiegeln auf Mechatronik-Chips ist dagegen längst gängige Technik in Beamern. Mit LEDs als Lichtquelle wird es ebenso wie mit der 3-Chip-Technik der Kinos - das Manko des flimmernden Regenbogenbilds los, das einen bei den üblichen Beamern mit Farbrad plagt.

übertrieben eingestellten Bildes gekauft und zu Hause aufgestellt haben, auf eine natürlichere Wiedergabe zurückdrehen können.

Um den richtigen Gammawert gab es ebenfalls Diskussionen: Während in der Computerwelt meist 2,2 als Norm angesehen wird, nutzt das englische Fernsehen bis zu 2,8, und die EBU-Mitglieder hatten ihre liebe Not damit, sich schließlich auf 2.35 zu einigen. Doch nur so kann aus "Buntfernsehen" Farbfernsehen werden.

dl2mcd@gmx.net

Literatur und URL

- [1] Institut für Rundfunktechnik: www.irt.de
- [2] TELI e.V. Journalistenvereinigung für technischwissenschaftliche Publizistik: www.teli.de
- [3] neuerdings.com: Panasonic zeigt auf CES 150-Zoll-TV "Fernseher erschlug Millionär!" http://neuer dings.com/2008/01/17/panasonic-zeigt-auf-ces-150-zoll-tv-fernseher-erschlug-millionaer/
- [4] Roth, W.-D., DL2MCD: Rotierende Farbräder und Spiegel - neue oder alte Fernsehtechnik? FUNK-AMATEUR 54 (2005) H. 10, S. 1014-1015
- [5] Roth, W.-D., DL2MCD: Internationale Funkausstellung 2005: Analog - digital - nicht egal! FUNKAMATEUR 54 (2005) H. 10. S. 992-995

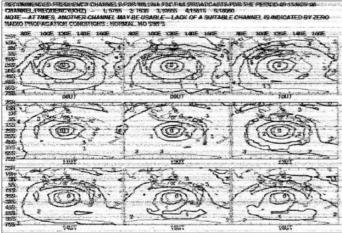
Rundfunk auf Umwegen: **UKW-Empfang aus Neuseeland**

HARTMUT BRODIEN - DE2HBD

Hörfunksender aus aller Welt sind heute über Antenne und per Internet empfangbar. Dieser Beitrag beschreibt eine Kombination beider Hörwege: Rund um den Globus stehen per Internet fernsteuerbare Empfänger, die den eigenen Empfangshorizont erheblich erweitern.

Sind Sie auch ein BC-DXer, der immer nach den Sendern sucht, die hier eigentlich gar nicht oder nur selten hörbar sind? Ich zeige, wie mithilfe eines Internetanschlusses ferne Radiostationen hörbar werden. Dabei geht es nicht allein um den inzwischen allgemein bekannten Live-Stream, den man zum Beispiel unter [1] anwählen

einen Handscanner AOR AR8200 MK III, und für DRM-Empfangsversuche kommt ein Yaesu FRG-100 zum Einsatz. Ungeduldige Hobbyfreunde finden ganz unten auf der Hauptseite gleich eine Schnuppermöglichkeit, wo der betagte NRD-515 eine fest eingestellte Frequenz zu Gehör bringt: Auf 8867 kHz ist man mit dem


Bild 1:

sind. So klicken wir zuerst auf den AOR AR7030 und kommen auf dessen Funktionsseite. Außer der gewünschten Frequenz sind die Modulationsart, die Filterbandbreite und sowie die AGC einstellbar. Auf zwei kleinen Grafiken rechts sind die Weltzeit (UTC) und eine Darstellung der Hell-Dunkel-Zone der Erde eingeblen-

Im Display des abgebildeten AOR und im Fenster für die Abstimmungseingabe steht gerade die Frequenz 9545 kHz. Auch hier muss erst die m3u-Datei gestartet werden, damit unser Player im Hintergrund läuft. Die Deutsche Welle sendet mit 300 kW vom Standort Woofferton in England. Um 0703 UTC laufen gerade Nachrichten, die man nun über den fernen Empfänger in Wellington, aber auch am eigenen Empfänger in der Hobbyecke aus kurzer Distanz hört.

Beide Signale kommen erwartungsgemäß in unterschiedlicher Audioqualität und vor allem um viele Sekunden zeitversetzt. Das Signal muss ja schließlich von England in Lichtgeschwindigkeit der Funkwellenausbreitung bis nach Neuseeland, wird dort vom Empfänger hörgerecht aufbereitet und über den angeschlossenen Computer in das Internet geschickt. Es ist also weniger erstaunlich, dass man auf Kurzwelle weit

kann. Hier geht es um die Fernbedienung konventioneller Empfänger und Antennen über das Internet.

■ Voraussetzungen

Wer einen Computer mit DSL-Anschluss nutzt, ist für das Experiment gut gerüstet. Der Rechner muss mit einer Soundkarte ausgestattet sein, um dort einen Lautsprecher oder Kopfhörer anzuschließen. Vielleicht sollte auch eine Frequenzliste bereit liegen oder das Internetportal [2] bekannt sein, in dessen Datenbanken Frequenzinformationen und Senderstandorte in ungeahnter Menge stehen. Einen Empfänger brauchen wir am eigenen Standort nicht, denn den leihen wir uns im neuseeländischen Wellington bei Chris Mackerell aus.

Klick ins WWW

Die entscheidende Internetadresse [3] belegt, dass wir wirklich in Neuseeland gelandet sind und bringt uns auf die Hauptseite so genannter Webserver Controlled Radio Receivers in Wellington. Chris hat für den Besucher seiner Site gleich vier beachtliche Empfänger zur Auswahl: einen JRC NRD-515, den begehrten AOR AR7030,

Mit dem AOR-7030 können Frequenzen von 0 bis 32 MHz, verschiedene Modi und Bandbreiten angewählt werden.

Ohr bei der Flugfunkstation Auckland Radio in SSB gelandet. Wenn wir auf Audio is Online klicken, öffnet auf dem Bildschirm ein Fenster mit der Frage, ob die Datei NRD515.mp3.m3u geöffnet oder gespeichert werden soll. Hier öffnen wir und im PC startet der für die Wiedergabe zuständige Multimedia-Player. Das ist meistens der Windows Media-Player, doch auch WinAmp oder QuickTime sind geeignet.

■ Deutsche Welle auf Umwegen

Unter den gezeigten Empfängern ist zu erkennen, ob sie aktuell online verfügbar entfernte Stationen hört, sondern eher, welche verschlungenen Wege die Internetübertragung bis zur eigenen DSL-Anschlussdose nimmt.

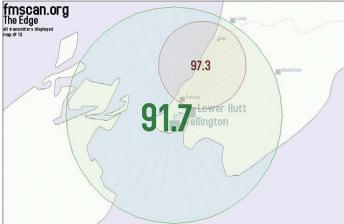
■ UKW-Empfang aus Wellington

Nun ermöglichen so genannte Überreichweiten auch im UKW-Hörfunkbereich teilweise spektakuläre Empfangserfolge. Dass es aber rund um den Globus geht, ist vorrangig der Kurzwelle vorbehalten. Wir können zum Schnelltest auf der Hauptseite ganz unten in einem kleinen Fenster World FM aus Wellington-Tawa auf 88,5 MHz besuchen. Hier steigt die Audioqualität

Tabelle 1: Liste gut empfangbarer Sender				
Sender				
Classic Hits				
ZM				
The Edge				
RNZ Conzert FM				
The Breeze				
The Rock				
Solid Gold FM				
Radio Live				
More FM				
RNZ National Radio				
Kiwi FM				

merklich, was bei UKW-Radio nicht überrascht. Nun sind wir aber auf das Können des AOR AR8200 MK III gespannt und wollen andere UKW-Sender hören. Bei [2] finden wir unter der Sucheingabe *Welling*-

bandempfänger mehr entlocken wollen und Frequenzen von anderen Diensten in Wellington gefunden haben, ist dem Hörspaß fast keine Grenze gesetzt. Alle Modulationsarten des Empfängers stehen zur Wahl.


■ Mit dem FRG-100 lauschen

Bei solchen Tests sollte man Stationen wählen, deren Empfang wegen regelmäßiger Aktivität vorhersehbar ist. Das ist beim Rundfunk und beim Volmet-Wetterfunk gegeben und so wählen wir gleich einmal 6676 kHz (alternativ: 8828 kHz), also die Frequenz von *Sydney Volmet* in Australien. Die Wetterinformationen kommen jeweils zur vollen und zur halben Stunde für etwa 5 min. Pünktlich zu diesen Zeiten setzt die Stimme der Ansagerin ein.

Bild 3: Bei FMSCAN.ORG findet der Benutzer nicht nur die gesuchte Frequenz, sondern gleich noch eine grafische Darstellung des Senderstandortes. auf dieser Frequenz einen starken Mittel-wellensender, *Radio New Zealand National*, mit einer offiziellen Reichweite von etwa 200 km. Auf den in Tabelle 2 genannten Mittelwellen sind weitere Stationen in guter bis sehr guter Qualität zu hören. Diese neuen Möglichkeiten bereichern den BC-DX-Empfang.

■ Fazit

Einen sehr weit entfernten Empfänger quasi mit dem langen Arm vom eigenen PC aus zu bedienen, bietet einen unvergesslichen Reiz, den Reiz der weiten Welt, die doch manchmal ach so klein ist. Vor allem für die Leser, die noch keinen eigenen Empfänger haben oder nur einmal in die Funkwellen hineinschnuppern wollen, ist dies eine interessante Möglichkeit. Mit eigener Ausrüstung ist es durchaus die Probe wert, Stationen von da und hier hinsichtlich der Empfangsmöglichkeiten zu vergleichen, was am Beispiel der Deutschen Welle deutlich wurde. Wer sich aber auf diesem Gebiet einmal richtig austoben möchte, findet unter [4] und [5] eine Vielzahl vergleichbarer Möglichkeiten. Dies ist aber kein Grund, die eigene Ausrüstung gleich verkaufen zu wollen und ganz auf das Internet zu setzen.

ton eine Auflistung von territorialen FM-Sendern. In dieser Liste stehen Frequenzen mit ausgesprochen guten Empfangs- und Klangeigenschaften (Tabelle 1).

Beim Probieren ist Geduld gefragt, denn der Wechsel des Senders nach der Frequenzeingabe dauert bis zu 40 s. Daran ist nicht etwa der lahme AOR-Scanner schuld, sondern der mächtige Kabelsalat namens Internet. Wenn Sie dem Multi-

Tabelle 2: MW-Scan in Wellington (NZL) Frequenz Sender [kHz] New Zealands Rhema 0594 0630 RNZ National Radio 0657 2YC Southern Star 0711 2XP BSport Radio 0783 2YB Access Radio 0891 2XW The Breeze 0972 2XG New Zealands Rhema 1035 2ZB Newstalk ZB 1161 2XM Te Upoko o Te Ika 1233 Solid Gold AM 1332 Radio Sport 1341 2ZN Newstalk ZB 1377 2XX Radio Sport 1404 4XL New Zealands Rhema 1503 Radio Sport 1539 2ZE Radio Sport

Bild 4: Blick in die Station von Chris Mackerell Fotos und Screenshots: DE2HBD

Sie ist so gut verständlich, wie wir es von Deutschland aus bei unserem DX-Empfang nur träumen können.

Für eine Empfangsexkursion auf die Lang- und Mittelwelle warten wir, bis es in Wellington dunkel ist. Auf allen Lang-wellenfrequenzen ist erwartungsgemäß nur Rauschen zu vernehmen. Gerade einmal eine Bake der Flugnavigation (NDB) mit der Kennung TY ist auf 234 kHz zu bemerken. Nun geht es von 531 kHz in 9-kHz-Schritten aufwärts und auch hier sind zunächst nur "Geistersender" und Rauschen zu hören. Dann endlich: Auf 567 kHz kommt tolle Countrymusik mit Johnny Cash und einer freundlichen weiblichen Ansagestimme in Englisch. Wellington hat

Wie sagt man doch völlig zu Recht: Wen der Virus der Hertzschen Wellen einmal gepackt hat, den lässt er nicht wieder los! Einige Zeit der Abstinenz von diesem geliebten Hobby also kann sehr schmerzhaft sein, was die Seele betrifft.

hartmutbrodien@t-online.de

Literatur und URLs

- [1] Webradioverzeichnis Surfmusik: www.surfmusik.de/
- [2] UKW-Senderverzeichnis FMScan.org: http://fmscan.org/
- [3] Mackerell, C.: Webserver Controlled Radio Receivers, Wellington: http://radio.owdjim.gen.nz
- [4] Global Tuners: www.globaltuners.com
- [5] The DX Zone, Verzeichnis der Online-Receiver: www.dxzone.com/catalog/Internet_and_Radio/ Online_Receivers/

Aktuelles von der Bandwacht

WOLFGANG HADEL - DK20M

■ Wintersaison auf Kurzwelle

Das Sonnenfleckenminimum und die typischen Winterbedingungen sorgten im Winter 2008/09 für eine Konzentrierung der Monitoringarbeit auf die niederfrequenten Bänder. Geringe atmosphärische Störungen ermöglichten nicht nur bessere DX-Bedingungen, sondern auch günstige Beobachtungsmöglichkeiten, sofern nicht gerade ein benachbartes Plasma-TV-Gerät alle Bemühungen zunichte machte. Dennoch konnte ich im Auftrag des DARC-HF-Referats einige hoch interessante Ereignisse im 160-m-Band analysieren.

■ Legal oder illegal? Brennpunkt 160-m-Band

Über den Status und die Aufteilung des 160-m-Bandes bestehen oft sehr unklare Vorstellungen. Dazu einige grundlegende Informationen aus dem BGBl. I 2006, 2071–2073: 1810 bis 1850 kHz – primär für Afu, max. 750 W PEP (Klasse A), 100 W PEP (Klasse E); 1850 bis 1890 kHz – sekundär für Afu, max. 75 W PEP (Klassen A, E); 1890 bis 2000 kHz – sekundär für Afu, max. 10 W PEP (Klassen A und E). Meine Aufgabe bestand vor allem darin, die primären Anwender im Bereich von 1850 bis 2000 kHz herauszufinden. Die

Tabelle zeigt die Ergebnisse nach sechswöchiger Beobachtung.

Die Aussendungen auf 1810 kHz (10 Töne parallel) passen eigentlich nicht in den primären Bereich. Es handelt sich wohl um ein System der polnischen Marine an der Ostseeküste. Alle anderen Dienste zwischen 1850 und 2000 kHz arbeiten absolut legal und mit primärer Zuweisung. Da helfen auch nicht die Motzereien verschiedener Funkamateure, die sich bei der Bandwacht beschweren. Primäre Systeme in diesem Bereich dürfen keinesfalls gestört werden. Funkamateure müssen sogar ausweichen, wenn diese Anwender auf Sendung gehen! Die Bandwacht hat nicht nur die Aufgabe, die bösen Intruder anzuprangern, sondern auch die Pflicht, auf legale und schutzbedürftige Funkdienste hinzuweisen.

Die Parameter der PSK-Systeme wurden mit einem Wavecom-Decoder W61 bestimmt. Zur Ermittlung von Standorten wurde die BNetzA um Peilhilfe gebeten.

■ Der Perseus im Bandwachttest

Das DARC-HF-Referat bekam im November 2008 von der Firma SSB-Electronic in Iserlohn einen Perseus [1] als Spende für die Bandwacht. Das gute Stück

Aktive legale Stationen von 1810 bis 2000 kHz (November/Dezember 2008) ITU kH₂ Τασ M Mode **Ident Bd** Shift **Zeit** Bemerkungen 1810,0 ady dly 11 A3E POL "Polish PIP", 10 Töne, poln. Navy? Nordpolen BC-PSK, Norwegen, 1851.0 ady dly 11 **OPSK** NOR 100 100 Radio-Navigation 1852,0 J3E-U I IPP Palermo Radio, Wetterdaten dly 11 1855,0 dly 11 J3E-U IOP San Benedetto Radio, vt. Wetterdaten 1876,0 vt dly 11 J3E-U I **IQN** Lampedusa Radio, Wetterdaten ady 12 2400 MIL-188-110B - 1k2, 1880.0 dly 8PSK S vt schwed. Navy, Karlskrona 1881,4 ady dly 11 **QPSK** F 100 100 BC-PSK, Nantes, Radio-Navigation J3E-U IPD 1888.0 11 vt. dly I Civitavecchia Radio. Wetterdaten 1894,0 BC-PSK, Orkney Islands, ady dly 11 **QPSK** G 100 100 Radio-Navigation 1895,0 **QPSK** G 125 ady dly 11 125 Orkney Islands, Radio-Nav. 1916,7 F1B 100 170 Sitor A, maritimer dly 11 D Wetterservice Hamburg J3E-U 1925.0 dly 11 IPI. Livorno Radio, Wetterdaten vt. 125 1942,5 ady dly 11 **QPSK** DNK 125 Westdänemark, Radio-Nav. 1946,0 ady dly 11 **QPSK** LTU 50 100 Litauen, Radio-Navigation **QPSK** 1946,3 25 25 Kaliningrad, Radio-Nav. dly 11 RUS ady 1980,2 vt dly 11 F₁B 1200 1200 NATO RATT - KG-84 Crypto - MIL-System burst BC-PSK, Südnorwegen, 1998,0 ady dly 11 **QPSK** NOR 100 100 Radio-Navigation

Erklärung der (englischen) Abkürzungen:

ady = all day (den ganzen Tag), vt = various times (unterschiedliche Zeiten), dly = daily (täglich), M = month (Monat), Mode = Betriebsart (J3E-U = upper sideband = oberes Seitenband, F1B = Frequenz-umtastung, PSK = phase shift keying = Phasenmodulation), Bd = Baudrate.

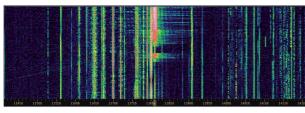
Mitteilungen an die Bandwacht

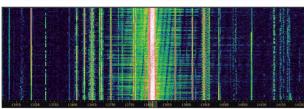
Ulrich Bihlmayer, DJ9KR (Vizekoordinator des IARU-Monitoring-Systems Region 1, Leiter der Bandwacht des DARC)
Eichhaldenstr. 35, 72074 Tübingen
Fax (0 70 71) 8 24 19;
E-Mail: bandwacht@darc.de

Speziell für digitale Intruder an: Wolfgang Hadel, DK2OM (Koordinator des IARU-Monitoring-Systems Region 1, stellv. Leiter der Bandwacht des DARC) Baumschulstr. 30, 35768 Siegbach E-Mail: dk2om@darc.de

Website der Bandwacht des DARC und des IARU-Monitoring-Systems in Region 1: www.iarums-r1.org

landete erwartungsgemäß bei mir und musste gleich an die "Front". Man darf vom Perseus nun nicht die Optionen eines hoch gezüchteten Stationsempfängers erwarten. Dafür eröffnen die Sonagramme (Wasserfalldarstellungen) bei 1,6 MHz Bandbreite eine neue Dimension für Monitoring-Experten. Unangenehm ist die erhebliche Verlangsamung des Wasserfalls (Spektrogramms) bei geringen Bandbreiten, ein Effekt, der von diversen Soundkartenprogrammen bestens bekannt ist.


Hier konnte die Kombination aus Perseus und W61-Decoder Abhilfe schaffen. Für Rätselfreunde sind die Hieroglyphen auf den Tasten sicher interessant. Es dauert eine Weile, bis man mit Hilfe des Manuals die Bedeutung der buchstabenähnlichen Zeichen auswendig beherrscht.


Bei einer Bandbreite von 1,6 MHz erscheinen viele breitbandige Systeme (Rundfunk, militärische Dienste, SSTV usw.) nur noch als vertikale Striche. Überhorizontradare und Ionosonden sind dagegen schnell entdeckt. Für die Überwachung der Amateurfunkbereiche genügt oft ein Bereich von 50 kHz Breite. Die fehlende Capture-Funktion muss man durch eine Bildschirm-Hardcopy ausgleichen. Das komplette "Frontplattenbild" des Perseus wird dann aus dem Zwischenspeicher in ein Grafikprogramm geladen und passend zugeschnitten. Trotz dieser kleinen Kinderkrankheiten eröffnete uns der Perseus interessante und hilfreiche Einblicke.

■ DRM-Besen

Der DRM-Sender, der auf 13 810 kHz jeden Morgen um 0803 UTC in Portugal eingeschaltet wird, verursacht immer noch Nebenprodukte, die bis weit in das 20-m-Band hineinreichen. Dieser Umstand wird von den Betreibern bestritten und von anderen Institutionen messtechnisch nicht erfasst.

Mit breitbandigen logarithmischen Antennen sind diese Nebenprodukte nicht nachweisbar. Das Problem liegt primär in der Impedanzanpassung zwischen Antenne und Empfängereingang. Lange Kabelwege und Antennenschalter zwischen Antenne und Empfänger sorgen für zusätzliche

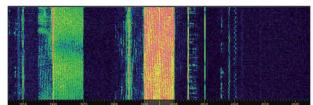


Bild 1: Sonagramm des DRM-Senders auf 13 810 kHz in Bildmitte (rosa) vor (unten) und nach dem Einschalten um 0803 UTC (oben)

Bild 2: Sonagramm des gleichen Senders mit Störungen im 20-m-Band (dünne, weiße, waagerechte Koronaprodukte); Bildmitte: DRM-Sender rosafarben!

Bild 3: Sonagramm des DRM-Senders (Wertach) auf 3995 kHz ohne störende Nebenzipfel

Screenshots: DK2OM

Dämpfungen. Vielleicht spielt auch jener Umstand eine Rolle: Wenn der "Rothammel" im Bücherregal verstaubt, ist nicht immer die Putzfrau daran schuld.

Der Perseus war bereits der dritte Empfänger, mit dem ich die Störungen durch den o. g. DRM-Sender nachweisen konnte. Als Antenne verwendete ich auf 14 MHz die weit verbreitete FB33-Yagi und auf 3,995 MHz die FD4-Windom.

Auf dem Sonagramm in Bild 2 müssten sich die Koronaprodukte auch unterhalb von 13 810 kHz weiter nach links ausbreiten. Da die FB33 eine sehr selektiv arbeitende Antenne ist, liegt der Frequenzbereich unterhalb von 13 810 kHz weit außerhalb der Resonanz. Auf dem Sonagramm des DRM-Senders 3995 kHz (Wertach, Bild 3) sind solche ausgeprägten Nebenzipfel nicht sichtbar! Folglich liegt es an der Technik des Senders auf 13 810 kHz sowie möglicherweise auch an Fehlbedienungen.

■ Militärische Aussendungen

Die meisten militärischen Aussendungen auf unseren exklusiven Bändern kamen aus Russland, Weißrussland und China. Die Clusterbaken im 40-m-Band bekamen Zuwachs: Die Bake "A" aus dem Bereich Wolgograd gesellte sich auf 7039,100 kHz zur üblichen Sammlung. Eine sehr beliebte Anlauffrequenz war 14000 kHz. Dort erwischte ich sogar die Navy von Singapur. Chinesische ALE-Systeme ließen sich im ganzen 20-m-Band aufspüren. Der nordkoreanische Geheimdienst wiederum fand 14075 kHz ideal für seine ALE-Produkte (ALE = automatic link establishment; MIL-188-141A - 8 × 125 Bd -FSK8).

NATO-Systeme bzw. westliche Militärsysteme wurden in den Exklusivbändern

äußerst selten beobachtet. Ganz andere Verhältnisse fanden wir auf 80 m. Dieses Band ist zwar primär jedoch nicht exklusiv zugeteilt. Alles Meckern hilft hier nicht! Zwischen 3500 und 3800 kHz konnte ich 38 verschiedene ALE-Systeme identifizieren. Das reicht schon fast für das LAA-Diplom (Logged All ALE)... Dazu kamen NATO-Stanag-Systeme (2400 Bd, 8PSK) und russische Systeme vom Typ AT3004D (12 × 120 Bd BPSK).

■ Kairo ruft Pjöngjang

Das ägyptische Außenministerium betreibt seit vielen Jahren Botschaftsfunk im exklusiven 20-m-Band. Im November und Dezember 2008 war es wieder soweit: Auf 14 046,7 kHz wurde täglich die ägyptische Botschaft in Pjöngjang (Nordkorea) angeschrieben (Selcall "OOVF"). Gesendet wurde in Sitor A und Sitor B, 100 Bd, 170 Hz Shift, ATU80 arabisches Alphabet. In der ITA2-Darstellung (Kasten) sind Teile einer Mitschrift dargestellt (Sitor B = FEC = forward error correction). An bestimmten Schlüsselwörtern (HUXD, KY) oder Buchstabenhäufungen erkennt man schnell den Ursprung. Im November bekamen wir Kontakt zu einem einflussreichen und sehr aktiven Funkamateur in Kairo. Er informierte umgehend die zuständigen Dienststellen seines Landes und bemühte sich

Sitor-B-Mitschrift (gekürzt)

13:29:53 / FRI, 12-DEC-08 KDPDKJ ODSWJ KB----- KDVKDS HUXD

vehement um Abhilfe. Wir hoffen, dass er dauerhaft Erfolg hat.

■ Wetterfax aus Südkorea

Auf 3585 kHz konnte ich allabendlich Wetterfaxsendungen aus Südkorea empfangen. Wetterfax wird normalerweise mit folgenden Parametern gesendet: 120 Umdrehungen/min - Modul 576 - Weiß bei 2300 Hz und Schwarz bei 1500 Hz (NF-Mittenfrequenz 1900 Hz). DJ9KR und ich kontrollierten via Internet die Tabellen für weltweite Faxaussendungen. Nur 3585 kHz war im Zusammenhang mit dem südkoreanischen Wetterdienst KMA nicht erwähnt. In der IARU-Region 1 arbeiten in diesem Bereich etliche Funkamateure mit digitalen Betriebsarten wie RTTY, Olivia und PSK31. Dort störten die Fax-Sendungen erheblich. In meiner Eigenschaft als Koordinator des IARU-Monitoring-Systems Region 1 sandte ich eine Anfrage an KMA. Eine Antwort steht bisher noch aus.

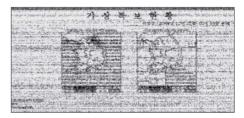


Bild 4: Südkoreanisches Wetterfax im Dezember, aufgenommen mit dem Wavecom W61

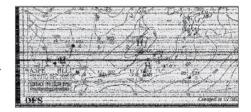


Bild 5: Ausschnitt aus einem Wetterfaxbild mit der Stationskennung "HLL" links unten

Hinweise

Bitte beachten: Wir geben bei allen digitalen Systemen stets die genaue Mittenfrequenz an. Frequenzen von Trägern (z.B. bei Rundfunksendern) werden mit 1 Hz Genauigkeit erfasst.

Vergessen Sie nicht, unsere Homepage (siehe gelben Kasten) regelmäßig zu besuchen. Sie wird in kurzen Zeitabständen aktualisiert und bietet nicht nur Newcomern eine Menge interessanter Informationen. Anfragen allgemeiner Art richten Sie bitte per E-Mail an DJ9KR, Anfragen zu digitalen Aussendungen bitte an DK2OM (auch WAV-Dateien). In der Betreffzeile soll aus Sicherheitsgründen auch ihr Rufzeichen angegeben sein oder zumindest ein eindeutiger Betreff.

Literatur

[1] Kuhl, H., DL1ABJ: Mehr empfangen mit Perseus SDR. FUNKAMATEUR 57 (2008) H. 9, S. 931

UA4WHX: mehr als 300 000 Funkverbindungen aus Afrika

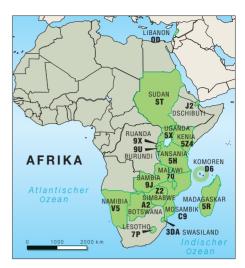
VLADIMIR BYKOV – UA4WHX

Die meisten Funkamateure kennen Vlad, UA4WHX, bereits von seinem mehrmonatigen Pazifik-Trip. Sein vorerst letztes Abenteuer führte den weit gereisten DXpeditionär hauptsächlich auf den afrikanischen Kontinent und dauerte mehr als zwei Jahre. Von Mai 2005 bis zum Sommer 2007 meldete er sich aus insgesamt 21 DXCC-Gebieten, verschliss dabei zwei Funkgeräte und verlor sogar einen Finger.

Was am Ende ganze 26 Monate dauerte, war jedenfalls zu Beginn gar nicht so geplant. Allenfalls etwa zwölf Wochen sollten es werden. Ja, es gab zwar einen groben Plan und ich wusste auch, welche Route ich einschlagen und welche DXCC-Gebiete ich aktivieren wollte, aber gegen

Reise wie diese möglichst unauffällig ablaufen sollte. Daher habe ich unnötige Aufmerksamkeit und Ankündigungen in den einschlägigen Amateurfunkmedien bewusst vermieden. Zum Teil auch deshalb, weil man, unabhängig davon wie erfahren und tapfer man selbst ist, während

Blick auf den Stationstisch von 7Q7VB in Malawi, bestehend aus Funkgerät samt Taste, Mikrofon und Kopfhörer, Netzteil, Papierlog mit Stiften, Uhr, einem Buch für die Zeit zwischen den Pile-Ups und – ganz wichtig – einer Rolle Toilettenpapier


Ende der Reise ließ ich mich einfach treiben und verbrachte Tage und ganze Wochen damit, zu warten und mich in Geduld zu üben. Ich wartete auf die erforderlichen Einreiseerlaubnisse, ich wartete auf die Ausstellung der Unterlagen für meine Amateurfunklizenz und natürlich auf die verschiedensten Transportmittel. Man kann eine Woche in Afrika dabei durchaus mit einer Stunde im normalen, europäischen Leben vergleichen, und ein Monat in Afrika entsprach in etwa einem Tag zu Hause. Immer wenn ich im QSO gefragt wurde, wann ich denn heimreisen würde, hatte ich aufrichtig gestanden, außer "ich bin schon auf dem Weg nach Hause", wenig zu sagen, es war einfach ein langer Weg in die Heimat.

Es war definitiv keine gewöhnliche DXpedition, sondern mehr ein Reiseabenteuer und es erforderte eine gute Portion gesunden Menschenverstandes, ein Gefühl dafür, zu welchen Zeitpunkten es gefährlich wurde und ein Gespür dafür, in welchen Situationen man zu völlig fremden Menschen nett sein und positiv denken musste. Ich war immer der Meinung, dass eine

eines derartigen Unternehmens mit vielen Unwägbarkeiten rechnen muss. Das war der Hauptgrund dafür, dass ich meine künftigen Pläne niemals enthüllt habe,

9U0VB bei der Demontage der Koaxialkabel-Dipole in Burundi.

Die von UA4WHX besuchten Länder (außer 4K und 4L), aus denen er Funkbetrieb durchführte. Grafik: A. Steinheisser

sondern lieber über das gesprochen habe, was ich bereits realisieren konnte. Im Nachhinein gesehen war diese Zurückhaltung gar nicht schlecht und machte – so meine ich – die Angelegenheit für die vielen Funkamateure, die meine Afrika-Reise über das Medium Amateurfunk verfolgten, sogar noch interessanter. Als hilfreich bei dieser Unternehmung erwies sich der glückliche Umstand, dass man zu Hause ein Reisebüro betreibt.

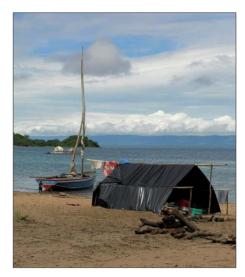
Die von mir während dieser Tour aktivierten Rufzeichen sind 3DA0VB, 4K0VB, 4L0B, 5H3VMB, 5H3VMB/3 (IOTA AF-075), 5H3VMB/5 (IOTA AF-074), 5R8VB, 5X1VB, 5Z4/UA4WHX, 5Z4/UA4WHX/p (IOTA AF-067), 5Z4BU, 7P8VB, 7Q7VB, 9J2VB, 9U0VB, 9X0VB, A25VB, C91VB, C91VB/4 (IOTA AF-103), C91VB/6 (IOTA AF-088), D20VB, D60VB, J20VB, OD5/UA4WHX, ST2KSS, ST2VB, V51VV, V51VV/p (IOTA AF-070) sowie Z2/UA4WHX.

■ Ein Weißer in Afrika fällt auf

Es ist keine Übertreibung, wenn ich behaupte, dass das Ganze ein ziemlich riskantes Spiel war, das für Unerfahrene im schlimmsten Fall sogar tödlich enden kann. Ein allein reisender Weißer fällt in Afrika nämlich immer auf. Beispielhaft für mögliche Gefahren kann ich einen Vorfall erzählen, der sich zugetragen hat, als ich mit dem Boot auf dem Malawi-See zwischen den Ländern Malawi und Mosambik unterwegs war.

Zwei Seeleute meinten, ich würde kein Portugiesisch verstehen und haben daher ganz offen über ihren Plan gesprochen, mich zu erstechen, dann auszurauben und anschließend in den Malawi-See zu werfen. Nach der Tat wollten sie nach Mosambik flüchten. Mehrere einheimische Frauen auf dem Boot, die dieses Gespräch

ebenfalls mitgehört hatten, waren darüber entsetzt und ich selbst wollte auch noch nicht sterben. Ich machte daher mit meiner Digitalkamera ein paar Aufnahmen von den nunmehr verunsicherten Matrosen, zeigte sie ihnen und konnte auf diese einfache Art und Weise die bedrohliche Lage entschärfen.


Es ist in Afrika übrigens eine weit verbreitete Meinung, dass jeder Reisende eine Waffe mit sich führt und er, entweder in einem speziellen Geldgürtel oder aber im mitgeführten Rucksack, haufenweise Bargeld bei sich hat. Da ich wie die Einheimischen reiste, bei ihnen wohnte und mit ihnen aß, wendete ich daher einen kleinen Trick an, um potenzielle Angreifer gleich von vorneherein abzuschrecken. Ich gab vor, eine Waffe zu haben (ich hatte natürlich keine!), und erweckte zugleich den Eindruck, so wenig Geld und Wertsachen mit mir zu führen, dass ich kein lohnendes Opfer, sondern eher ein Mensch sei, den man noch unterstützen müsse.

Dieser kleine Kniff klappte ganz vorzüglich. Die Afrikaner halfen mir, sie sorgten sich um mich und zeigten mir ihr Land. Dafür bin ich vielen warmherzigen Leuten unendlich dankbar, die mich akzeptierten, mich unterstützten und die schließlich auch Sinn und Zweck unseres Hobbys Amateurfunk verstanden.

■ Touren mit Funkausrüstung

Die Reise wurde durch den Umstand verkompliziert, dass ich ständig einen Rucksack mit den zum Funken notwendigen Gerätschaften mitführen musste. Die gesamte Ausrüstung hatte eine Masse von etwa 20 kg: Allein 10 kg brachten die neun einzelnen Monoband-Sloper-Dipole aus Koaxialkabeln zusammen mit etwa 70 m Koaxialkabel-Speiseleitung und diversen Nylonschnüren auf die Waage. Hinzu kamen das Funkgerät, das dazugehörige Netzteil und sonstiges Zubehör wie z.B. Mikrofon und Morsetaste. Einen geeigneten Träger zum Aufbau der Antennen konnte ich übrigens im Normalfall vor Ort finden. Meist war es ein Stück Bambus oder aber irgendein Metallrohr.

Das Passieren des Zolls erforderte, jedenfalls dann, wenn das Einreiseland für den Import von Funkgeräten eine Genehmigung verlangte, einen weiteren Trick. Normalerweise gab es keine Chance oder keine Zeit, eine derartige Erlaubnis zu erhalten. Deshalb tat ich alles Mögliche, um zu verhindern, dass mein Amateurfunkgerät vom Zoll entdeckt wurde. In Äthiopien hatte ich z. B. die Tasche, die bereits kontrolliert worden war, mit der ausgetauscht, in der sich das Funkgerät befand. In Saudi-Arabien habe ich, nachdem man den Transceiver entdeckt hatte, die Aufmerk-

7Q7VB: Aussicht auf den Malawi-See, neuntgrößtes Gewässer der Erde

samkeit des Beamten auf meine Schnorchelausrüstung gelenkt und plauderte, um den Beamten abzulenken, mit ihm darüZwei Angehörige des Ministeriums taten mir den Gefallen, mich und meinen Bus die ganze, rund sechsstündige Fahrtstrecke bis zur Grenze nach Saudi-Arabien zu begleiten, um zu gewährleisten, dass der "Moukhabarat" (das jemenitische Gegenstück zum amerikanischen FBI bzw. CIA) meine Funkausrüstung nicht beschlagnahmte.

Standortsuche

Es war nicht immer einfach, einen geeigneten Funkstandort zu finden. Ich versuchte selbstverständlich, die Leistungsfähigkeit meiner Funkstation, sowohl empfangs- als auch sendeseitig, durch die Wahl eines möglichst guten Standorts zu verbessern.

Hotels blieben meist eine schlechte Wahl. Der Platz zum Aufbau von Antennen ist dort normalerweise limitiert, und hinzu kommen Empfangsstörungen durch alle möglichen elektrischen Geräte. Oft lagen

Vlad, UA4WHX, in seinem provisorischen Shack beim Funkbetrieb als C91VB/4 von Chinde-Island (IOTA AF-103)

Leckere Delikatesse aus Uganda: Heuschrecken ohne Flügel

ber, wie nett doch mein Gespräch mit dem saudischen Konsul in der jemenitischen Stadt Sanaa gewesen sei. Ähnlich verlief es im Jemen. Dort brachte ich, um eine Sicherstellung der Funkausrüstung zu vermeiden, mein Funkgerät in das Gebäude des zuständigen Telekommunikationsministeriums und beließ es dort bis zu meiner Weiterreise nach Saudi-Arabien.

die Hotels auch noch in irgendeinem Tal. So hatte ich mir das nicht vorgestellt.

Nun, wie würde man normalerweise vorgehen? Ich würde vor der Abreise eine Landkarte des DXCC-Gebiets, das man aktivieren will, studieren und den höchstgelegenen Standort, der eine zuverlässige Stromversorgung bietet, als Platz zum Funken auswählen. Dann würde ich, unabhängig davon, ob nun touristisch erschlossene Unterkünfte verfügbar wären oder nicht, einfach anreisen, um herauszufinden, was es vor Ort für Möglichkeiten gibt. Ich würde mit den Einheimischen, mit Ortsvorstehern oder Bürgermeistern reden, erklären, was man weshalb tun wolle und anschließend fragen, ob man nicht irgendwo eine Station aufbauen könne, wo ich auch nächtigen dürfe.

Wenn ich diesen Ansatz wählte, erregte ich in den meisten Fällen zuerst großes Misstrauen, und normalerweise brauchte ich auch ein bis zwei Tage, um mich einzurichten. Doch wenn das anfängliche Misstrauen überwunden war, rollte man mir buchstäblich den roten Teppich aus. Bei den Einheimischen gab es auch keine Probleme hinsichtlich meiner persönlichen Sicherheit und der meines Hab und Guts: Niemand hat jemals meine Antennen beschädigt oder meine Habseligkeiten berührt, nicht einmal dann, wenn ich sie offen und unbeaufsichtigt herumliegen ließ.

■ Der Standort zählt

Ich kam recht schnell zu der Erkenntnis. dass man von einem guten Standort, besonders von einer Insel, auch mit einer in der Sendeleistung limitierten Funkstation recht anständige QSO-Zahlen erreichen kann, und zwar sogar im QRP-Betrieb. Das war z.B. auf der Insel Kwale in Tansania der Fall, wo ich unter dem Rufzeichen 5H3VMB/3 funkte. Dort standen mir nur Solarzellen zur Verfügung, sodass die Sendeleistung nur 10 bis 15 W betrug. Dennoch stellten konstante QSO-Raten von 600 bis 700 Funkkontakten pro Tag überhaupt kein Problem dar. Auf 30 und 40 m konnte ich – sogar dann, wenn ich nicht im Splitbetrieb arbeitete - Pile-Ups mit japanischen Funkamateuren fahren.

Kleiner Antennenwald aus Monoband-Dipolen in Ruanda (9X0VB)

schaltet" hätte oder man eine Antenne mit Richtwirkung verwenden würde.

■ Die Funklizenz

Zu meinem großen Bedauern konnte ich nicht aus jedem Land, das ich während meiner Reise besuchte, auch Funkbetrieb

> Frauen auf dem Weg zum Markt in Livingstonia: Die kleine Stadt mit etwa 7000 Einwohnern, die nach dem berühmten schottischen Missionar und Afrika-Forscher Sir David Livingstone benannt ist, liegt 1000 m ü. NN im Norden Malawis, knapp 270 Meilen von der Hauptstadt Lilongwe entfernt.

> > Fotos: UA4WHX

Was dabei – so glaube ich – half, war der Umstand, dass die Anrufer ja nicht wussten, wie wenig Leistung mir zur Verfügung stand. Die anrufenden Stationen meinten halt, dass die Ausbreitungsbedingungen wieder einmal schlecht seien.

Ich fand weiterhin heraus, dass eine Höhe von 1000 m über dem Meeresspiegel ungefähr dieselbe Wirkung hatte, als wenn man anstatt eines Dipols eine Zwei- oder Dreielement-Yagi einsetzen würde. Je höher der Funkstandort über dem Meeresspiegel liegt, desto höher steigt die Signalstärke. Aus diesem Grund war es für mich – wenn ich mangels Endstufe schon keine zusätzliche Leistung machen konnte – ziemlich wichtig, ein geeignetes Fleckchen in den Bergen zu finden. Die Steigerung der Signalstärke war, als ob jemand bessere Ausbreitungsbedingungen "einge-

Vlad, A25VB, als Haushaltshilfe in Botswana

machen. Ein Beispiel dafür ist Eritrea. Das Land befand sich im Kriegszustand mit Äthiopien und man vertrat deshalb die Ansicht, dass Amateurfunk nicht erlaubt werden könne.

Äthiopien wiederum gestattete den Amateurfunk zwar, verlangte jedoch, dass man im Land ansässig und über eine entsprechende Arbeitserlaubnis verfügen müsse. Im Jemen hingegen dachte man (wer auch immer dieses Gerücht verbreitet hat), dass die erste große Funkexpedition, die aus diesem Land aktiv sein sollte, als Belohnung eine große Summe US-Dollar mitbringen werde. Wer diese Belohnung denn zahlen sollte, konnte mir zwar keiner sagen, doch es lag auf der Hand, dass man sich ein Stück vom Kuchen sichern wollte. Aus diesem Grund bekam ich auch keine Funkgenehmigung für den Jemen.

In Kinshasa, der Hauptstadt der Demokratischen Republik Kongo, werden zwar grundsätzlich Amateurfunklizenzen ausgestellt, aber die zurzeit meines Aufenthalts vorherrschende, komplette Gesetzlosigkeit bedeutete auch, dass jeder, der irgendeinen Stempel zur Verfügung hatte, die Lizenz ausstellen würde, solange nur ausreichend dafür bezahlt wurde.

Diejenigen wiederum, die offiziell zur Ausstellung einer Amateurfunklizenz befugt waren, wiesen einige "Leseschwächen" auf und "verwechselten" auf ihrer Preisliste beständig 2000 US-\$ mit 2000 kongolesischen Francs (2000 kongolesische Francs sind etwa 4 US-\$), obwohl sie mit den Zahlen an sich keinerlei Probleme hatten. Weiterhin besuchte ich noch Syrien, Jordanien, Saudi-Arabien, Somali-Land und das Puntland, eine Region im Nordosten von Somalia. Leider konnte ich auch aus diesen Gegenden nicht funken. Aber wie heißt es doch so schön: Es gibt immer ein nächstes Mal!

Für mich war diese Afrika-Reise ein einziges großes Abenteuer und eine nicht unerhebliche Anstrengung. Es stellt sich die Frage: War das Ganze die Mühen denn letztlich auch wert? Die Antwort lautet definitiv "Ja", trotz des Verlustes des kleinen Fingers der rechten Hand, den ich mir auf den Komoren beim missglückten "Absprung" von einem Dach an einer scharfen Blechkante abriss. Mein Funkabenteuer machte eine Menge Leute glücklich und ich erlebte so viel, dass man ein ganzes Leben braucht, um alle Eindrücke und Erfahrungen zu verarbeiten.

Und überhaupt, was bedeutet denn Leben? Meiner Auffassung nach sind das die Tage, an die wir uns erinnern. Und daher kann ich berechtigt sagen: Afrika hat mir jede Menge Leben gegeben.

Übersetzung und Bearbeitung: Dr. Markus Dornach, DL9RCF

Ergebnisse der Umweltstudie vom Januar 2008 sind irrelevant!

Dr. OSKAR A. WAGNER - OE10WA, OE30WA

Die "Umweltepidemiologische Untersuchung der Krebsinzidenz in den Gemeinden Hausmannstätten und Vasoldsberg" von Dr. Gerd Oberfeld, veröffentlicht Ende Januar 2008, sorgte in Österreich und international für große Aufregung. Dieser Beitrag stellt dem Fakten gegenüber.

In namhaften Printmedien erschienene Beiträge zu dieser Studie, wie die in nebenstehendem Kasten aufgeführten, erregten Aufsehen und verunsicherten erhebliche Teile der Bevölkerung enorm.

■ Hintergrund der Studie

Durchgeführt wurde diese Studie, die sich auf den Raum Vasoldsberg/Hausmannstätten (Bezirk Graz-Umgebung) bezieht, weil die Bevölkerung einen Verdacht auf eine Häufung von Krebserkrankungen äußerte. Untersucht wurde das Gebiet in einem Umkreis von 1200 m rund um das Festnetzwählamt in Hausmannstätten. Das Ergebnis der Studie war: Ein "signifikant erhöhtes Krebsrisiko im Umkreis von 200 Metern durch Mobilfunkstrahlung".

Bei der Ursachenermittlung war man davon ausgegangen, dass eine Sendeanlage für das 1997 abgeschaltete C-Netz der Verursacher sei. Das Foto im veröffentlichten Bericht zeigt eine provisorische D-Netz-Anlage, die am Standort im Jahr 1994 für sechs Monate installiert war. Danach wurde diese D-Netz-Antenne auf einem 33 m hohen Rohrmast am selben Grundstück aufgestellt [4]. Das D-Netz, der vorübergehende Nachfolger des C-Netzes, wurde mit Ablauf des 28. Februar 2002 eingestellt und arbeitete in den Frequenzbereichen 890 MHz bis 905 MHz und von 935 MHz bis 950 MHz.

■ Keine C-Netz-Anlage vorhanden!

Die *mobilkom austria* – Eigentümerin des betroffenen Standortes – forderte Dr. Oberfeld gemeinsam mit allen Mobilfunkunternehmen wiederholt zum öffentlichen Widerruf dieser Studie auf, **da an dem betreffenden Standort niemals eine Mobilfunkanlage für das C-Netz betrieben wurde**. Aufgrund der Beweislage sah sich das Land Steiermark veranlasst, am 13.3.08 die Studie von der Website des Gesundheitsressorts zu entfernen [5].

Die Studie selbst wurde aber vom Autor nicht widerrufen, sodass sich die *mobilkom austria* genötigt sah, den Rechtsweg zu beschreiten. Der Geschäftsführer des *Forum Mobilkommunikation* kritisiert: "Krebs auf eine nicht-existente Mobilfunkanlage zurückzuführen lässt jegliche objektive und sorgfältige Herangehensweise vermissen und hat leider auch negative Auswirkungen auf die Mobilfunk-Diskussion [6]."

Durch einen Vergleich wurde nunmehr die Nichtexistenz der Mobilfunkanlage festgestellt. Darin wird ausgeführt [7]:

"1. Der Beklagte, Herr Dr. Gerd Oberfeld, nimmt zur Kenntnis, dass sich im Bereich des Wählamtes Schemmerlstraße in Hausmannstätten, Steiermark, zu keinem Zeitpunkt eine C-Netz-Mobilfunkanlage befunden hat. Der Beklagte verpflichtet sich, es ab sofort zu unterlassen, die Tatsachenbehauptung, dass sich am vorgenannten Ort eine solche Mobilfunkanlage befunden hätte, welche auf einen kausalen Zusammenhang mit dem gehäuften Auftreten von Krebserkrankungen schließen lässt, oder eine Behauptung sinngleichen Inhaltes, insbesondere auch im Rahmen seiner "Umweltepidemiologischen Untersuchung der Krebsinzidenz in den Gemeinden Hausmannstätten & Vasoldsberg' aus Jänner 2008, zu verbrei-

2. ..

Salzburg, am 3.11.08"

Die Reaktionen darauf waren bisher eher verhalten! Es wäre sehr zu wünschen, dass die Printmedien die Unrichtigkeit dieser Studie ebenfalls so markant veröffentlichen würden wie deren Verlautbarung! Die für uns wohl wichtigste Aussage trifft das Bundesministerium für Verkehr, Innovation und Technologie, nämlich: "Zu dieser Studie wird festgestellt: Die Expositionsangaben sind falsch – zur angegebenen Expositionszeit war kein C-Netz-Sender vorhanden. Die Ergebnisse sind daher irrelevant." [8]

■ Erhöhtes Krebsrisiko unplausibel

Dr. Martin Röösli vom Institut für Sozialund Präventivmedizin der Universität Bern untersuchte das Gutachten Dr. Oberfelds im Auftrag der Krebsliga Schweiz und kam am 25. 2. 08 zum Schluss: "... Dass Mobilfunkbasisstationen das Krebsrisiko in diesem Ausmaß erhöhen, ist jedoch unplausibel. Wäre dies nämlich der

Pressestimmen zur Umweltstudie

- Studie: Handy-Masten verursachen Krebs (Presse, 1. Februar 2008)
 Im Umkreis von 200 Metern ist das Krebsrisiko besonders hoch, bestätigt nun eine Grazer Studie.
- Neue Studie: Krebsrisiko durch Mobilfunk (Wiener Zeitung, 2. Februar 2008)
 Graz. Ein "signifikant erhöhtes Krebsrisiko im Umkreis von 200 Metern durch Mobilfunkstrahlung" hat der Salzburger Umweltmediziner Gerd Oberfeld in einer vom Gesundheitsressort des Landes Steiermark im Jahr 2005 in Auftrag gegebenen Studie festgestellt.
- Die Schweizer Interessensgemeinschaft Elektrosmog-Betroffener führt mit Datum 21. Februar 2008 im Internet aus:
- "... die erste echte Langzeitstudie mit über 1300 Teilnehmern über eine Zeitspanne von 13 Jahren zeigt erschreckende Resultate. Ein C-Netz-Sender (434,2 MHz) verursachte bei vergleichbarer Sendeleistung mit einem heutigen Mobilfunksender für die Anwohner das 23-fache Brustkrebsrisiko und das 121-fache Gehirntumorrisiko. Das allgemeine Krebsrisiko für alle Arten betrug das 8,5-fache..."

Anmerkung OE10WA: Die angegebene Frequenz 434,2 MHz entspricht Kanal 46 des Industriestandards für die 69 Sprechfunkkanäle im LPD-Bereich! Im C-Netz wurden die Frequenzbereiche 451,30–455,74 MHz und 461,30–465,74 MHz verwendet.

Fall, müsste in den letzten Jahren, parallel zum Aufbau der Mobilfunknetze, eine drastische Zunahme der Krebserkrankungen beobachtet worden sein. Dies war nicht der Fall. Die Hauptschwäche der Studie liegt darin, dass nur ein Gebiet untersucht wurde, bei dem schon vor Beginn der Untersuchung eine auffällige Häufung von Krebsfällen bestand. ... "[9] Wir Funkamateure wissen freilich, dass sich im 70-cm-Band, das insgesamt den Bereich von 400 bis 470 MHz umfasst, eine Fülle von Anwendern (national und international) tummeln. Da sind z.B. die uns selbst beeinträchtigenden Industrial, Scientific & Medical-Anwendungen (ISM), Low Power Devices (LPD) bzw. Short Range Devices (SRD) von 433,05 bis 434,79 MHz, in Österreich die Personenrufanlagen von 439,11 bis 439,99 MHz (die auch in Krankenhäusern verwendet werden), sowie Private Mobile Radio (PMR) von 446,0 bis 446,1 MHz.

Nachfolgend einige Anwendungen des ISM-Bereichs: Babyphone, drahtlose Rufanlagen, Funkfernschalter für Beleuchtung und Funksteckdosen, Fernthermometer, Funkfernschaltung der Zentralverriegelung beim Kraftfahrzeug und vieles andere mehr. Zwischen 410 und 430 MHz tummeln sich analoge und digitale Bündelfunksysteme für private Nutzung und für Anbieter von Mobilfunkdiensten sowie Richtfunk bei stationären Anwendungen.

Der Bereich 449,775 bis 449,850 MHz dient Funkfernsteuerungsanlagen zur Übertragung medizinischer Messwerte(!) und zur Fernsteuerung von Verkehrssignalanlagen. Diese Aufzählung ist keineswegs vollständig! Eine vollständige aktuelle Auflistung gibt der Frequenznutzungsplan der Frequenznutzungsverordnung [10].

■ Weitere Argumente

Ein seit mehreren Jahren laufendes Gerichtsverfahren gegen zwei österreichische Mobilfunknetzbetreiber hat vor dem Landesgericht Eisenstadt ein Ende gefunden. Basierend auf mehreren Fachgutachten wies das Gericht die Klage des Gemeindearztes Dr. Reinhold Jandrisovits ab. Der Arzt hatte die Netzbetreiber auf Unterlassung des Betriebs der Mobilfunkanlagen sowie auf Schadenersatz verklagt und im Laufe des Verfahrens verschiedenste Theorien als Gründe für die vermuteten gehäuften Erkrankungen in seiner Gemeinde präsentiert.

Die im Auftrag des Gerichts eingeholten umweltmedizinischen sowie elektrotechnischen Fachgutachten konnten jedoch keinen Zusammenhang mit dem Betrieb der Sendeanlagen erkennen. [11]

Die Weltgesundheitsorganisation (WHO) [12] hat sich bereits mehrfach mit gesund-

heitlichen Fragen rund um den Betrieb von Mobilfunk-Basisstationen beschäftigt und im Mai 2006 ein neues Faktenblatt -Nr. 304 – unter dem Titel Basisstationen und drahtlose Technologie herausgegeben. Fazit der WHO: "In Anbetracht der geringen Expositionsstärke und der bisher erschlossenen Forschungsergebnisse gibt es keinen überzeugenden wissenschaftlichen Nachweis, dass schwache HF-Signale von Basisstationen und drahtlosen Netzwerken negative gesundheitliche Auswirkungen haben." [13]; s. a. [15] Nach der Verkehrsunfallstatistik geschehen in Österreich die meisten Unfälle mit Fußgängern auf Schutzwegen! Der Logik der beiden in diesem Beitrag oben genannten Mediziner folgend, müssten diese Schutzwege für Fußgänger als besonders gefährlich verboten werden. Das Oberfeld-Gutachten kommentierte ein Leser im Online-Standard schon am 9.3.08 noch bissiger: "Ich kenne eine Gegend im Burgenland, dort ist die Krebsrate fast doppelt so hoch wie im österreichischen Schnitt. Und dort haben die Weinbauern fast alle rote Traktoren mit dem Kennzeichen

Redaktionell gekürzt, aus [16]

ND... Ergo: Rote Traktoren mit Kennzei-

chen ND... erhöhen das Krebsrisiko

Literatur und URLs

- [1] www.wienerzeitung.at/DesktopDefault.aspx? TabID=3932&Alias=WZO&cob=325772& currentpage=8
- [2] http://diepresse.com/home/panorama/ oesterreich/359856/index.do?from=simarchiv
- [3] www.gigaherz.ch/1278/
- [4] www.pressetext.at/pte.mc?pte=080225022
- [5] http://www.fmk.at/content.php?id=366&cb=229 _1042, http://www.fmk.at/media/pdf/pdf799.pdf
- [6] www.pressetext.at/pte.mc?pte=080623035
- [7] www.fmk.at/content.php?id=366, Landesgericht Salzburg GZ 6 Cg 54/08g
- [8] www.bmvit.gv.at/telekommunikation/funk/mobil telefonie/downloads/wbfgesundheit2008.pdf
- [9] www.mobile-research.ethz.ch/var/ Kommentar_Roeoesli_oberfeldstudie.pdf
- [10] BGBl. II, Nr. 307, vom 26. November 2005
- [11] www.fmk.at/content.php?id=249&cb=166_1097, Landesgericht Eisenstadt GZ 27 Cg 255/05a
- [12] Weltgesundheitsorganisation, engl. World Health Organization, Sonderorganisation der Vereinten Nationen mit Sitz in Genf, Schweiz: www.who.int
- [13] www.who.int/mediacentre/factsheets/fs304/en/ Die deutsche Version findet sich auf der Homepage des schweizerischen Forum Mobil unter www.forummobil.ch/de/service_content_detail. php?id=306&lan=de
- [14] http://derstandard.at/?id=3242334
- [15] Zusammenstellung von Studien, die öffentliches Interesse erweckt haben, und deren Bewertung durch das (deutsche) BfS (Bundesamt für Strahlenschutz): www.bfs.de/de/elektro/papiere/ Synopse_EMF.pdf
- [16] Wagner, O. A., OE10WA: Ergebnisse der Umweltstudie vom Jänner 2008 sind irrelevant! qsp 34 (2009) H. 1, S. 17–20

APRS-Stationen im Navigationsgerät anzeigen – geht denn das?

enorm." [14]

FRANK RUTTER - DL7UFR

Seine Wegspuren im Internet hinterlassen kann man schon lange dank APRS. Kenwood liefert seit Jahren Mobilfunktransceiver, die mit eingebautem TNC APRS unterstützen. Navigationssysteme im Auto sind auch nicht mehr neu. Aber ein Navigationsgerät, welches APRS unterstützt, das ist neu!

Der Navigationsspezialist AvMap hat auf der Ham Radio im Sommer 2008 zusammen mit dem Funkgerätehersteller Kenwood ein solches Gerät vorgestellt. Das Navigationsgerät geosat 5 Blu APRS besitzt eine Schnittstelle zur Kommunikation mit allen Kenwood-Funkgeräten, die APRS unterstützen. Neben den Daten des GPS-Empfängers, die vom Navigationsgerät an das Funkgerät geschickt werden, stellt das Funkgerät empfangene Positionsdaten dem Navigationsgerät zur weiteren Nutzung zur Verfügung. Das geosat 5 legt die empfangenen Positionsdaten im Verzeichnis APRS unter dem Menüpunkt Kontakte ab. Diese Daten können für die Navigation als Ziele genutzt werden. Obendrein ist es möglich, alle Positionsdaten von APRS-Stationen in Echtzeit auf dem Display des geosat 5 darzustellen.

■ Frisch ausgepackt

Für diesen Testbericht standen ein Kenwood TM-D710E sowie ein AvMap geosat 5 Blu bereit, die dankenswerterweise von der Kenwood Electronics Deutschland GmbH bereitgestellt wurden. Beide Geräte sind schnell ausgepackt und jedes für sich angeschlossen. Leider findet man im Benutzerhandbuch des geosat 5 keinen Hin-

Bild 1: Verbindungskabel zwischen APRSfähigem Kenwood-Funkgerät und dem geosat 5

Bild 2: geosat 5 und TM-D710E bilden im Verein ein APRS-taugliches Navigationssystem.

weis auf den Betrieb mit einem APRS-Funkgerät. Dieser Beitrag soll diese Lücke schließen.

Für die Verbindung des geosat 5 Blu mit dem TM-D710E benötigt man ein bei einigen Fachhändlern bereits im Lieferumfang des geosat 5 Blu befindliches Spezialkabel mit einem vier- und einem dreipoligen 2,5-mm-Klinkenstecker, siehe Bild 1. Der Erstere kommt in die TMC-Buchse des Navi-

Bild 3: Einstellen der Konfiguration zur Kommunikation mit dem TM-D710 – Menü – Einstellen

Bild 5: Einstellen der Konfiguration zur Kommunikation mit dem TM-D710 – Profile – Seite 2 - Schnittst.

Bild 7: Auswahl eines Navigationsziels aus dem APRS-Ordner – Kompl. Info – DKOBLN

gationsgeräts, wodurch allerdings die Nutzung des Verkehrsinformationssystems TMC nicht mehr möglich ist. Man muss sich also zwischen der Anzeige von APRS- oder TMC-Informationen entscheiden. Da der TMC-Empfänger ohnehin nur als optionales Zubehör ausgeliefert wird, ist dies sicher eine leichte Entscheidung. Der dreipolige 2,5-mm-Klinkenstecker findet in der GPS-Buchse am Display des TM-D710E seinen Platz.

■ Einstellungen

Kommen wir nun zu den Einstellungen. Beim geosat 5 geschieht dies relativ einfach. Nach dem Drücken der *Menü-*Taste wählt man auf dem Monitor den Punkt *Einstellungen* aus. Zahlreichen Funktionen zur individuellen Einstellung des Navigationsgeräts stehen bereit. Hier ist der Punkt *Benutzerprofil* auszuwählen.

Bild 4: Einstellen der Konfiguration zur Kommunikation mit dem TM-D710 – Einstellen – Profile

Bild 6: Einstellen der Konfiguration zur Kommunikation mit dem TM-D710 – Schnittst. – APRS 4800 – OK

Bild 8: Wegführung vom Autor zu DK0BLN Foto: WiMo; Screenshots: DL7UFR

Auf Seite 2 der Benutzerprofileinstellungen findet sich schließlich der Punkt *Porteinstellung*. Hier kann man zwischen TMC, APRS4800 und APS9600 auswählen. Die Zahlen hinter APRS geben dabei die gewählte Übertragungsrate zwischen Navigations- und Funkgerät an. Die Übertragungsrate ist analog zum Funkgerät zu wählen. Weitere Einstellungen am Navigationsgerät sind vorerst nicht notwendig.

Beim TM-D710E sind eigentlich auch nur wenige Einstellungen notwendig. In [2] habe ich ausführlich die Möglichkeiten der Einstellung der Parameter des Kenwood TM-D710E beschrieben. Deshalb fasst hier lediglich der oben stehende Kasten die notwendigen Einstellungen im Menü *APRS* zusammen.

Nach Abarbeitung der o. g. Menüpunkte ist die APRS-Frequenz 144,800 MHz einzustellen. Durch Drücken der Taste *TNC* wird

Einstellungen im Menü APRS

BASIC SETTINGS Menü #600

- MY CALLSIGN: <eigenes Rufzeichen>
- BEACON TYPE: APRS

INTERNAL TNC Menü #601

- DATA BAND: A-BAND
- DATA SPEED: 1200 bps
 DCD SENSE: D or RxD BAND
- TX DELAY: 200 ms

GPS PORT Menü #602

- BAUD RATE: 4800 bps oder 9600 bps (Einstellung analog am geosat 5 wählen)
- INPUT: GPS
- OUTPUT: WAYPOINT

WAIPOINT Menü #603

- FORMAT: KENWOOD
- NAME: 9-CHAR
- OUTPUT: ALL

BEACON INFORMATION Menü #606

- SPEED: ON
 - ALTITUDE: ON
- POSITION AMBIGUITY OFF

BEACON TX ALGORITHM Menü #611

METHOD: AUTO

der APRS-Modus *APRS12* eingeschaltet. Mit der Taste *BCON* aktiviert man das automatische Aussenden von Positionsdaten. Wenn alle Einstellungen ordnungsgemäß erfolgten, sollte nun das *GPS-Symbol* im Display des TM-D710E blinken.

■ Viele interessante Punkte

Nun sind wir schon fast am Ziel. In der Werksauslieferung hat AvMap die Anzeige für die Liste der interessanten Orte (POI) aktiviert. In Berlin erscheinen dadurch so viele "interessante Orte" auf der Anzeige des Navigationsgeräts, dass die Symbole der APRS-Stationen in der Menge untergehen. Das lässt sich einfach ändern, indem man im Menü *Einstellungen – Kartensymbole* alle aktivierten Kategorien abwählt. Schließlich ist im gleichen Menü nur noch die Kategorie *Kontakte* zu aktivieren.

Ab diesem Moment kann man das Navigationssystem, das einerseits den Standort anderer Funkstationen anzeigt, andererseits dafür sorgt, dass die eigene Position regelmäßig verbreitet wird, in vollen Zügen genießen.

Das geosat 5 Blu APRS ist ab etwa 500 € im Fachhandel, z. B. bei WiMo (s. a. S. 127), erhältlich.

Literatur und URLs

- [1] Kuhl, H., DL1ABJ; Hegewald, W., DL2RD: Leistungsschau des Amateurfunks: 33. Ham Radio 2008. FUNKAMATEUR 57 (2008) H. 8, S. 820–825
- [2] Rutter, F., DL7UFR; Flechtner, U., DG1NEJ: TM-D710E: Neue Features f
 ür den Datenfunk (2). FUNKAMATEUR 57 (2008) H. 2, S. 144–147
- [3] FA-Typenblatt: TM-D710E; VHF-/UHF-FM-Transceiver. FUNKAMATEUR 57 (2008) H. 2, S. 175 f.
- [4] Kenwood Electronics Deutschland GmbH: Postfach 1555, 63133 Heusenstamm, Tel. (06104) 6901-0; www.kenwood.de

Kommunikationsempfänger Palstar R30A

HARALD KUHL - DE8JOI

Eigenständige Kommunikationsempfänger, die also ohne Unterstützung durch einen externen Computer auskommen, sind heute auf dem europäischen Markt rar. Der neue amerikanische R30A von Palstar [1] ist daher eine willkommene Bereicherung, auch wenn die darin steckende Technik lange vom R30CC bekannt ist.

Der Doppelsuper (ZF: 45 MHz und 455 kHz) empfängt Signale in AM, LSB sowie USB im Frequenzbereich von 0,1 bis 30 MHz und lässt sich in 20-Hz-Schritten abstimmen. Die beiden ab Werk eingebauten ZF-Bandbreitenfilter der Firma Collins selektieren mit nominell 2,5 beziehungsweise 5,8 kHz und sind unabhängig von der Modulationsart wählbar. Zum störungsarmen Empfang von CW- oder Fernschreibsignalen in belebten Bändern empfiehlt sich also die Unterstützung durch ein externes NF-Filter. Oder man tauscht das 5,8-kHz-ZF-Filter gegen ein schmales und verzichtet auf die komfortable AM-Bandbreite.

Gehäuse kratzt. Palstar wollte die Konstruktion durch die Versenkung des VFO-Knopfes in der Frontplatte wohl stabilisieren, hat jedoch eine mechanische Isolierung zwischen beiden Komponenten etwa mittels einer Führung versäumt. Dies widerspricht dem sonst robusten Empfängeraufbau in seinem schwarzen Metallgehäuse, das eine Klappstütze in eine bedienerfreundliche Schräglage zum Nutzer bringt.

Die frontseitige Kopfhörerbuchse (6,3-mm-Monoklinke) ergänzen vielfältige Anschlussmöglichkeiten auf der Geräterückseite: Dort lassen sich über eine PL-Buchse niederohmige (50 Ω) sowie über Klemmbuchsen hochohmige Empfangsantennen

Beschränkung auf das Wesentliche: Der konventionell aufgebaute Doppelsuper empfängt von 100 kHz bis 30 MHz in SSB und AM.

Auf der Frontseite liegen der kombinierte Ein-/Ausschalter mit Lautstärkesteller, sieben Tasten ohne eindeutigen Druckpunkt, sechs rote LEDs zur Anzeige von Betriebszuständen sowie ein analoges und laut Hersteller kalibriertes S-Meter mit leichter Hintergrundbeleuchtung zur Anzeige der Empfangsfeldstärke. Dem beim Format 60 $mm \times 13 mm$ (Breite \times Höhe) kleinen aber kontrastreichen LC-Display (auf Tastendruck ständig beleuchtbar) ist einzeilig die Empfangsfrequenz auf 100 Hz genau oder bei Speicherbetrieb die entsprechende Ziffer des Frequenzspeichers zu entnehmen. Der mit einem Durchmesser von 39 mm ausreichend dimensionierte VFO-Knopf liegt fast komplett in der Frontplatte versenkt, sodass man zur Frequenzabstimmung auf die dezente Fingermulde angewiesen ist. Allerdings sitzt der Kunststoffknopf samt Achse derart wackelig auf der dahinter liegenden Platine, dass er beim beherzten Suchempfang regelmäßig am

und eine Erdverbindung anschließen. Beide Antenneneingänge liegen allerdings ständig parallel und sind nicht für Antennenvergleiche umschaltbar. Zwei Ausgänge führen das NF-Signal: Bei Line Audio (Cinch) liegt es mit einem festen Ausgangspegel, um darüber einen Recorder anzusteuern oder das Signal an einen externen Decoder für digitale Betriebsarten zu reichen. Über eine 6,3-mm-Monoklinkenbuchse lässt sich ein externer Lautsprecher $(3 \text{ W/8 }\Omega)$ anschließen, der den unter der oberen Gehäuseschale eingebauten ersetzt. Bei Betrieb mit einem Sender schaltet der Empfänger über die Cinch-Buchse Radio Mute stumm. Ein ZF-Ausgang war in dieser Geräteklasse immer selten, sodass der 455kHz-Ausgang (2. Zwischenfrequenz) des R30A eine willkommene Ergänzung ist. Ohne den sonst obligatorischen Eingriff in den Empfänger lässt sich so das ZF-Signal von dort einem externen Mischer zuführen, der es auf 12 kHz zur DRM-Deco-

Technische Daten (Herstellerangaben)

Modellbezeichnung: Palstar R30A Empfangsbereich: 100 bis 30 000 kHz Modulationsarten: AM, LSB, USB ZF-Bandbreiten: 2,5 und 5,8 kHz Schaltungstyp: Doppelsuper (1. ZF: 45 MHz; 2. ZF: 455 kHz) Empfindlichkeit (10 dB S+N/N): 0,1 bis 2 MHz: AM 2 μ V, SSB 0,5 μ V; 2 bis 30 MHz: AM 1 μ V, SSB maximal 0,5 μ V Dynamikbereich: >90 dB bei 50 kHz Signalabstand IP3: +15 dbm Frequenzstabilität: ±20 Hz/h Frequenzspeicherplätze: 100 NF-Leistung: 2 W/8 Ω Anschlussmöglichkeiten: Kopfhörer (Front; 6,3-mm-Monoklinke), Stromversorgung: extern 10,5 bis 14 V/1 A;

intern zehn Mignon-Zellen Abmessungen: 234 mm × 85 mm × 212 mm (Breite × Höhe x Tiefe; ohne überstehende

Steller, Buchsen und Standfüße)

Masse: 1800 g

Lieferumfang: Empfänger, Bedienungsanleitung

dierung mittels Computersoftware bringt. Die externe Stromversorgung (10,5 bis 14 V) läuft über eine Hohlstiftbuchse; alternativ ist der Betrieb mit zehn Mignon-Zellen im Empfänger möglich. Den etwas umständlichen Zugriff auf den internen Batteriehalter erhält man nach dem Lösen von sechs seitlichen Schrauben und dem Entfernen der oberen Gehäuseschale (Achtung: kurzes Lautsprecherkabel). Akkumulatoren lassen sich mangels Ladeschaltung nicht im Empfänger wieder auffrischen, müssen also immer entnommen werden.

■ Bedienkonzept

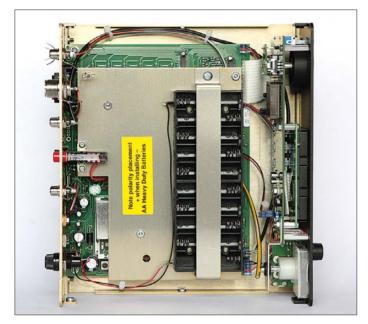
An Übersichtlichkeit ist das Bedienkonzept des R30A kaum zu überbieten, was nicht nur positive Aspekte hat: So ist zur Frequenzeinstellung hauptsächlich der sehr leicht gängige und wie erwähnt labile VFO-Knopf zuständig, denn eine Frequenztastatur zur direkten Eingabe fehlt und lässt sich auch nicht extern nachrüsten. Immerhin führen die beiden rechts daneben liegenden Tasten in 100-kHz-Schritten einigermaßen flott in die Nähe der gewünschten Empfangsfrequenz. Die Empfängerklassiker JRC NRD-515 und Yaesu FRG-100 waren ähnlich ausgestattet, doch bestand dort die Option zur Nachrüstung einer externen Frequenztastatur. Diese Möglichkeit hat man hier nicht – mangels Datenschnittstelle auch nicht per Computer und darauf laufender Steuersoftware.

Das LC-Display zeigt die Empfangsfrequenz zwar nur auf 100 Hz, doch lässt sich der Empfänger in minimal 20-Hz-Schritten abstimmen. Das reicht für die meisten digitalen Betriebsarten; ein Druck auf den VFO-Knopf steigert die Abstimmschrittweite auf 100 Hz. Auch die weiteren Bedienoptionen lassen keine Fragen aufkommen: Die Taste Mode wechselt im KarussellVerfahren zwischen den Modulationsarten AM, LSB und USB. *BW* schaltet die beiden Bandbreitenfilter, *AGC* zwischen schneller und langsamer Regelzeit, *ATT* den 10-dB-Abschwächer. Rot leuchtende LEDs bestätigen Betriebszustände.

Zum direkten Zugriff auf häufig empfangene Frequenzen hält der Palstar 100 Speicherplätze bereit. Die merken sich neben der Frequenz die Betriebsart, das Bandbreitenfilter sowie die Stellung der AGC (langsam/schnell) und des Abschwächers (an/aus). Wechselt man vom VFO- in den Speichermodus, zeigt das LC-Display wahlweise die Nummer des Speicherplatzes oder die dort hinterlegte Frequenz. Per VFO-Knopf oder über die rechts daneben

Mangels eingebauter Uhr braucht der R30A für automatische Aufnahmen etwa von Nachrichtensendungen, Wetterberichten oder Rundsprüchen auf einer zuvor gewählten (Speicher-)Frequenz die Unterstützung durch eine externe Schaltuhr.

■ Empfangspraxis


Um das Empfangspotenzial des Palstar praxisnah zu prüfen, diente als Vergleichsempfänger ein AOR AR7030. Beide Geräte bekamen ihr Empfangssignal über einen passiven Splitter von der breitbandigen Aktivantenne Wellbrook ALA1530 und hatten somit identische Startbedingungen. Auf Langwelle brachten beide Empfänger vormittags im Hörfunk- sowie im Baken-

Im geräumigen Inneren des Palstar ist Platz für einen Batteriehalter, der zehn Mignon-Zellen trägt.

Fotos: DL1ABJ

regelmäßig ganz nahe am AOR, wobei die angenehme Wiedergabe beim R30A mit vom Hersteller praxisnah gewählten AGC-Werten auffiel. Erst im Contest-Getümmel war der AR7030 mit seiner abschaltbaren AGC und der möglichen manuellen Verstärkungsregelung klar im Vorteil hinsichtlich der Lesbarkeit schwacher/gestörter Signale. Bei der subjektiven Hörempfindlichkeit lagen beide Empfänger meist gleichauf, was sich bis ins 27-MHz-Band mit seinen oft schwachen AM-CB-Signalen bestätigte. Für einen Test auf 10 m fehlten mangels Bandöffnung schlicht die Signale.

Auch der AM-Empfang auf Kurzwelle zeigte das bereits gewonnene Bild: Will man auf 6070 kHz das seltene 1-kW-Signal von CFRX Toronto hören, während auf 6075 kHz die Deutsche Welle mit 250 kW tobt, hilft nur die abschaltbare AGC eines AR7030. Und in den Tropenbändern bringen bei gestörten Signalen oft erst das dem Palstar fehlende Passband Tuning und/ oder Notchfilter die entscheidende zusätzliche Lesbarkeit. Von solchen kniffligen Fällen abgesehen, konnte der R30A auch beim BC-DX auf Kurzwelle gut mithalten: Schon das breite Filter trennt in 5kHz-Abstand liegende Sender gut und das schmale bringt deutlich zusätzliche Erleichterung.

Das rückwärtige Anschlussfeld ist üppig ausgestattet – nur eine Datenschnittstelle fehlt.

liegenden Tasten wechselt der Empfänger zwischen den Speicherfrequenzen. Ein Druck auf die Taste MEM führt zurück in den VFO-Modus. Dabei übernimmt der Empfänger automatisch und unvermeidbar den Inhalt des zuletzt aufgerufenen Speichers samt aller Einstellungen in den VFO. Das ist keine optimale Lösung, denn so ist es nicht möglich, kurz eine Speicherfrequenz zu prüfen und danach sofort auf die zuvor im VFO-Modus empfangene Frequenz zurückzukehren. Andererseits lässt sich diese Eigenart des Empfängers dazu nutzen, um mit Hilfe der Speicher trotz fehlender Frequenztastatur unkompliziert zwischen den Bändern zu wechseln: Man belegt einige Plätze mit zentralen Frequenzen und gelangt jetzt schnell etwa vom 80ins 20-m-Amateurfunkband - inklusive korrektem Seitenband.

Der Empfänger hat ein gutes Gedächtnis und merkt sich die Speicherinhalte selbst bei längerer Trennung von der Stromversorgung. Einmal gespeicherte Frequenzen lassen sich auch nicht wieder löschen, sondern nur mit anderen überschreiben. band identische Ergebnisse; auch sehr schwache NDB-Signale waren mit dem Palstar lesbar. Dieser Eindruck bestätigte sich anschließend auf der Mittelwelle, wo auf 531 kHz noch gegen 1000 UTC ein schwaches Signal von den Faroer Inseln lesbar ankam. Der AOR hatte hier wegen seiner größeren Filterauswahl sowie der Möglichkeit einer Anpassung von Höhen und Bässen leichte Vorteile. Doch beeindruckte der R30A mit seiner in AM und SSB sehr rauscharmen Wiedergabe. Auch auf den höheren Mittelwellen lag der AOR bei Signalen an der Grasnarbe oft nur knapp vorn. Beide Empfänger profitierten dabei von der Rahmenantenne, mit der sich bei sorgfältiger Ausrichtung örtliche elektrische Störsignale beinahe komplett ausblenden ließen.

Auch beim SSB-Empfang in den Amateurfunkbändern auf Kurzwelle lag der Palstar

■ Fazit

Palstars R30A bietet über den gesamten erfassten Frequenzbereich eine solide Empfangsleistung, die den AR7030 hinsichtlich Empfindlichkeit und Lesbarkeit selbst schwacher SSB- und AM-Signale fast erreicht. Bei schwieriger Empfangslage mit gestörten Signalen fehlen allerdings schnell die für einen DX-Empfänger obligatorischen Ausstattungsdetails, wie abschaltbare AGC mit manueller Regelung, Passband Tuning sowie Notchfilter.

Ein *Dankeschön* geht abschließend an [2] für die Stellung des Testmusters.

cbjf@funkamateur.de

Literatur und Bezugsquelle

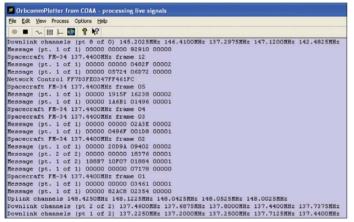
- [1] Palstar Incorporated, Piqua: www.palstar.com
- [2] Charly H. Hardt Funktechnik, Edelhoffstraße 70, 42857 Remscheid, Tel. (02191) 80598, www.charly-hardt.de

Satellitenbeobachtung mit OrbcommPlotter

HARALD KUHL - DL1ABJ

Auf der Ham Radio 2008 verfolgten viele Besucher die Vorführungen von Freddy de Guchteneire, ON6UG, der mit seinem 1-m-Spiegel das Signal einer Raumsonde einfing und es per SDR auf einem Bildschirm zeigte. Zum Einstieg in diesen fesselnden Bereich des Fernempfangs reichen ein Breitbandempfänger mit Rundstrahlantenne sowie ein Computer mit Softwaredecoder: OrbcommPlotter decodiert VHF-Signale von Kommunikationssatelliten auf erdnahen Umlaufbahnen.

Moderne Satellitenkommunikation ist nicht auf den ortsfesten Einsatz der Sende- und Empfangsanlagen festgelegt, wie wir es etwa vom Empfang der analogen oder digitalen Astra-Rundfunksatelliten kennen. Vielmehr übermittelt das Militär längst Informationen mit tragbaren Geräten per Satellit und wer als Privatanwender eine gut ten, die wie Astra und Eutelsat in ihrer hohen Umlaufbahn immer die gleiche Position zur Erde haben, sondern rund 30 so genannte LEO-Kommunikationssatelliten (*Low Earth Orbit*) in einer niedrigen Umlaufbahn. Deren Startkosten sind deutlich geringer als bei den geostationären Satelliten und Dank des kürzeren Übertra-


Bild 1: OrbcommPlotter decodiert die Telemetriedaten überfliegender Kommunikationssatelliten.

• B4(FM16)

- A3(FM07)

seine Daten an den Orbcomm-Transceiver weiter, der sie automatisch an den nächsten erreichbaren Kommunikationssatelliten des Systems sendet. Dieser überträgt die empfangenen Informationen unverzüglich an eine von derzeit 14 weltweit verteilten Bodenstationen – die für Europa zuständige steht in Italien –, von wo sie den Adressaten per E-Mail erreichen. Laut Orbcomm dauert die komplette Übermittlung etwa von einer Baustelle in Afrika zur Zentrale in Belgien rund 6 min. Jeder Orbcomm-Satellit hat Sendeempfän-

ger für den VHF-Frequenzbereich 137,0 bis 150,05 MHz für den Up- und Downlink an Bord; ein zusätzlicher Sender für den UHF-Bereich 400,075 bis 400,125 MHz überträgt das Signal einer Funkbake unter anderem mit der Kennung des jeweiligen Satelliten. Da sich Orbcomm das Spektrum mit anderen Nutzern teilt, hat der Betreiber für den Uplink mit dem Dynamic Channel Activity Assignment System (DCAAS) ein Verfahren zur flexiblen Frequenznutzung entwickelt. Dabei checkt der Bordcomputer des Satelliten per Suchlauf beim Überflug ständig die verfügbaren Frequenzen hinsichtlich anderer Nutzer, ermittelt so die für eine störungsfreie

gefüllte Reisekasse hat, leistet sich ein Satellitentelefon für Iridium, Thuraya oder Globalstar.

Letztere bieten neben der Sprachkommunikation auch die Datenübermittlung mit einer Übertragungsrate bis 9,6 kBit/s. Inmarsat als Vorreiter der zivilen Satellitenkommunikation garantiert seinen Nutzern eine Datenrate bis maximal 420 kBit/s und hat vor allem Anwender in der Hochseeschifffahrt sowie bei Forschungseinrichtungen an abgelegenen Orten (mangels Abdeckung außer Polregionen). Die Satellitenflotte der amerikanischen Firma Orbcomm [1] ergänzt diese Kommunikationswege und ist auf die Datenübermittlung spezialisiert.

■ Datenfunk per Orbit

Als fliegende Relaisstationen übertragen Orbcomm-Satelliten auf VHF-Frequenzen bei 137 MHz Datentelegramme, die sie von kompakten portablen oder mobilen Sendeempfängern am Boden mit einer Datenrate bis 4,8 kBit/s erhalten. Zum Einsatz kommen keine geostationären Satelli-

Bild 2: Die Karte zeigt die Orbcomm-Satelliten in Empfangsreichweite, eigener Standort gelb, Satelliten weiß.

gungswegs sinkt auch die benötigte Leistung der Sendeanlage. Ein Erdumlauf dauert etwa 100 min und pro Überflug sind rund 15 min Funkkontakt mit einer Bodenstation möglich – abhängig vom Standort der Antenne, die freie Sicht zum Satelliten braucht.

Die Orbcomm-Satelliten umkreisen die Erde auf Umlaufbahnen in etwa 800 km Höhe und empfangen dabei Datentelegramme. Zu den darin enthaltenen Informationen zählen etwa Statusmeldungen von Industrieanlagen (*Pipelines*, Wasserkraftwerke), Positionsangaben (*Container*, Baufahrzeuge) sowie aktuelle Messdaten von Wetter- oder Erdbebenstationen. Auch die Route von Fahrzeugen lässt sich so jederzeit aus der Ferne beobachten: Der Navigationsempfänger des Fahrzeugs gibt

Datenübertragung derzeit freien Kanäle und funkt diese Angaben per Telemetrie an die terrestrischen Empfänger in Reichweite. Alle 15 s ändert das System den *Uplink*-Kanal, was laut Betreiber eine gute Koexistenz mit den anderen Nutzern dieses Teils des Spektrums und somit die fehlerfreie Datenübertragung sichert.

■ OrbcommPlotter

OrbcommPlotter [2] ist eine Decodersoftware für die Soundkarte und bringt die Telemetriedaten eines Orbcomm-Satelliten auf den Bildschirm des Computers, darunter die mit DCAAS ermittelten *Uplink*-Frequenzen sowie weitere Statusinformationen. Das Programm interessiert sich ausdrücklich nicht für die vom Satelliten empfangenen und an die Bodenstation ge-

sendeten Datentelegramme der Nutzer, fängt also keine elektronische Post ab. Neben einem Computer mit Betriebssystem Windows (95/98/ME/2000/XP) und Soundkarte gehört ein Empfänger zur

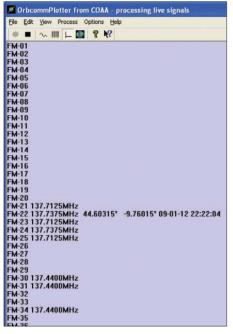


Bild 3: Das Programm merkt sich automatisch die Frequenzen der empfangenen Satelliten.

Grundausstattung, der den Frequenzbereich um 137 MHz in Schmalband-FM empfängt. Für beste Ergebnisse empfiehlt [2] die Signalabnahme über einen separaten Datenausgang oder Diskriminator, der zur Ausstattung bessere Breitbandempfänger gehört. Andere Modelle sind nachrüstbar [3] und notfalls lässt sich das zu decodierende Signal für erste Versuche auch dem Kopfhörer- oder *Line*-Ausgang entnehmen.

Die Installation der unter [2] verfügbaren Version 1.3 (730 kB) klappte beim Test wie von anderer COAA-Software gewohnt problemlos und dauerte keine Minute. Danach bleiben 21 Tage Zeit, um die Vollversion in aller Ruhe zu testen. Für eine längere Nutzung ist eine Registrierung notwendig, die etwa 30 € kostet.

■ Einrichtung

Nach der Installation des Programms sollte man zunächst unter *Options/Home* die geografischen Koordinaten des eigenen Standortes eintragen, damit Orbcomm-Plotter auf einem Globus die Kennungen der Satelliten in Reichweite zeigt. Die aktuellen Bahndaten sind unter [4] als Datei mit der Endung .tle verfügbar. Diese kopiert man ins Unterverzeichnis *COAA/OrbcommPlotter/log files* und holt sie bei *Options/TLE/Define* ins Programm. Ein Mausklick auf das bunte Globus-Symbol aktiviert die Grafik mit den empfangbaren

Orbcomm-Satelliten. Ein Doppelklick auf die grüne Schaltfläche startet das Programm und der Globus aktualisiert nun etwa alle 2 s die Satellitenpositionen. So lässt sich schon recht gut abschätzen, wann eines der Signale am eigenen Standort hörbar sein müsste. Die Systemzeit des Computers läuft dabei auf MEZ/MESZ. Ein Audiokabel bringt das Datensignal vom Empfänger - beim Test ein Icom IC-PCR2500 mit separatem Datenausgang – zum NF-Eingang des Computers, hier der in [5] vorgestellte Mini-PC Asus Eee Box B202. Um dem örtlichen Störpegel zu entgehen und eine direkte Sicht zum Satelliten zu bekommen, ist der Einsatz einer Außenantenne ratsam. Eine typische Discone mit Rundumcharakteristik empfiehlt sich als preisgünstige Lösung; bei Platzproblemen reicht auch eine gute rauscharme Aktivantenne. Eine möglichst freie Rundumsicht unterstützt den Empfang von Satelliten, die nur knapp über dem Horizont vorbei ziehen.

■ Erfahrungen

Zeigt die Grafik einen überfliegenden Satelliten im Umkreis von 2000 km (Mittelmeer bis Nordkap), sucht man im Frequenzbereich 137 bis 138 MHz in FMschmal in 5-kHz-Schritten nach einem Signal: Ein Orbcomm-Satellit klingt nach einer Mischung aus einem pulsierenden analogen TV-Träger mit leisem Wetterfax und hat man dies einmal gehört, ist die Aussendung leicht zu identifizieren. Sobald die Software ein Signal erkennt, beginnt die Decodierung und OrbcommPlotter schreibt die Daten Zeilenweise auf den Bildschirm (Untermenü *View/Messages*). Das klappte beim Test erfreulich schnell,

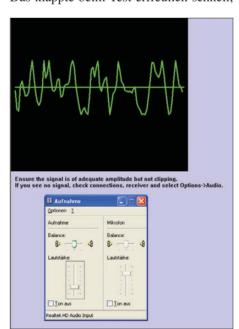


Bild 4: Hier lässt sich bei Bedarf die NF-Lautstärke anpassen. Screenshots: DL1ABJ

als der Satellit mit der Kennung FM-24 übers Mittelmeer zog und auf 137,7375 MHz seine Telemetriedaten sendete. Danach dauerte es rund 20 min, bis die nächsten Orbcomm-Signale aufzunehmen waren (FM-22 auf ebenfalls 137,7375 MHz; FM-25 auf 137,7125 MHz; FM-31 auf 137,44 MHz). Anders als in der Hilfedatei des Programms in Aussicht gestellt, ist also nicht jederzeit ein Signal empfangbar und oft braucht man etwas Geduld. Die decodierten Daten schreibt das Programm auch in eine Logdatei und stehen so zur späteren Ansicht bereit.

Sobald der Satellit seine exakte Sendefrequenz auf den Bildschirm schreibt, kann man die des Empfängers entsprechend korrigieren. Klappt die Decodierung trotz hörbarem Signal nicht, ist der eingestellte NF-Pegel eventuell zu niedrig oder zu hoch. Klarheit schafft ein Blick auf die Signalanzeige (Menü *View/Signal*), wobei die Signale oben und unten nicht anstoßen sollen (keine abgeflachten Signalspitzen).

■ Fazit

Mit OrbcommPlotter ist die Decodierung der Telemetriedaten verblüffend einfach und lässt sich mit vielen für diesen Frequenzbereich geeigneten FM-Empfänger realisieren. Die manuelle Frequenzsuche in 5-kHz-Schritten ist in der Praxis unkritisch, auch wenn der Kanal dann meist um einige Kilohertz neben der Mittenfrequenz liegt: Der Decoder spricht dennoch an, sobald das Signal stark genug ist. Die Darstellung der Satellitenpositionen auf dem Globus ist hilfreich zur Einschätzung von Empfangsmöglichkeiten. Bei der Beobachtung dieser Grafik stellte sich heraus, dass die darauf sichtbaren Satelliten meist Südeuropa, das Mittelmeer oder Nordafrika überqueren und dann weiter Richtung Naher Osten ziehen. Eher selten zog ein Satellit seine Bahn über Nordeuropa.

Nach den Erfahrungen mit dem leider nicht mehr aktiven RS12/13 auf 15 und 10 m sowie dem Empfang der ISS auf 145,8 MHz weckt OrbcommPlotter hier erneut Interesse, sich näher mit dem Empfang von Signalen aus dem Weltraum zu befassen. Es muss ja nicht gleich Voyager [6] sein.

cbjf@funkamateur.de

Literatur

- [1] Orbcomm, Dulles: www.orbcomm.com
- [2] Download OrbcommPlotter: www.coaa.co.uk/orbcommplotter.htm
- [3] Nachrüstung eines Diskriminators: www.discriminator.nl/index-en.html
- [4] Orbcomm-Bahndaten:
- www.orbcomm.com/downloads/elementSets.htm
 [5] Kuhl, H., DL1ABJ: Günstiger Dauerläufer: Asus
 Eee Box B202. FUNKAMATEUR 58 (2009)
 H. 1. S. 26–27
- [6] Deep Space Network: http://voyager.jpl.nasa.gov/ news/profiles_dsn.html

Vom Bit zur Multiträgermodulation – digitale Modulationsverfahren

Dr. JOCHEN JIRMANN - DB1NV

Digitale Modulationsverfahren finden seit langem in der Funktechnik Verwendung und der Einsatz von Signalprozessoren erlaubt es, die Vorteile analoger und digitaler Übertragungstechniken mit geringem Aufwand zu vereinigen. Nach einer Übersicht über digitale Modulationsverfahren werden wir uns einer Betrachtung im Zeit- und Frequenzbereich zuwenden und damit den Schritt zu den modernen Multiträgerverfahren machen. Als Beispiel dient uns das Digital Radio Mondiale (DRM).

Grundverfahren der digitalen Übertragungstechnik

Wie kommt das Bit auf den HF-Träger? Die drei Standardverfahren der Amplituden-, Frequenz- und Phasenmodulation lassen sich direkt in die digitale Welt übernehmen. Im einfachsten Fall verwenden wir Modulationssymbole, die nur ein Bit beinhalten, z. B. wie beim Funkfernschreiben zwei Frequenzen für Null und Eins. Ist der Übertragungsweg störarm, kann ein Modulationssymbol mehr als zwei Zustände enthalten und so mehr als ein Bit übertragen; es gibt Datenübertragungsverfahren mit 16 Frequenzen, dann enthält ein Symbol 4 Bit.

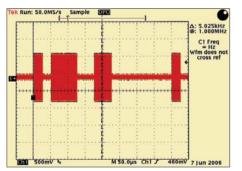


Bild 1: Amplitudentastung eines 10-MHz-Trägers im Zeitbereich

■ Amplitudenumtastung (ASK)

Die einfachste Form der Amplitudenmodulation ist die Ein-Aus-Tastung der Trägerwelle wie bei Telegrafie (engl.: *Amplitude Shift Keying*, ASK). Da man den logischen Zustand Null nicht von einer unterbrochenen Verbindung unterscheiden kann, verwendet man in der Praxis zwei Amplitudenwerte: Bei der Zeitübertragung von DCF77 sind es 100 % und 25 % Amplitude.

Vorteile:

- Das Spektrum des Modulationssignals wird nur nach oben geschoben und tritt symmetrisch zur Trägerfrequenz auf.
- Die Modulation ist irgendwo zwischen Oszillator und Antenne möglich.
- Die Amplitude ist auf der Empfangsseite direkt messbar.

Nachteile:

 Amplitudenfehler auf dem Übertragungsweg (Pegelschwankungen, Störimpulse) erzeugen Fehler.

■ Frequenzumtastung (FSK)

Den Modulationssymbolen werden unterschiedliche Frequenzen zugeordnet, z. B. bei RTTY und Packet-Radio zwei Frequenzen für Null und Eins. Man kann das entweder als zwei gegenphasig getastete, amplitudenmodulierte Teilkanäle interpretieren oder als Frequenzmodulation (engl.: Frequency Shift Keying, FSK), bei der die (nie vorhandene) Mittenfrequenz um einen Frequenzhub Δf nach oben oder unten geschoben wird. Ist der Abstand der beiden Frequenzen gleich der halben Datenrate, so spricht man von Minimum Shift Keying (MSK), das ist die Standardmodulation der GSM-Mobilfunknetze.

Vorteile:

- Die Amplitude enthält keine Information und ist daher störsicherer.
- Es sind keine linearen Senderverstärker und linearen Empfänger nötig.
- Die Frequenz ist auf der Empfangsseite direkt messbar.

Nachteile:

- Das Spektrum des frequenzmodulierten Trägers ist theoretisch unendlich breit, aber immer breiter als bei AM (B = $2\Delta f$ + $2f_{mod}$).
- Die Modulation bedeutet einen Eingriff in den Oszillator, also eine schlechtere Frequenzstabilität.

Phasenumtastung (PSK)

Man kann mit einiger Mathematik zeigen, dass Frequenz- und Phasenmodulation (engl.: *Phase Shift Keying*) sehr ähnlich sind und sich durch geeignete Filter für das Modulationssignal ineinander überführen lassen. Die gängigsten Verfahren verwenden eine Zweiphasenumtastung (0/180°, engl.: *Binary Phase Shift Keying*, BPSK) und eine Vierphasenumtastung (0/90/180/270°, engl.: *Quadrature Phase Shift Keying*, QPSK). Die Zweiphasenumtastung lässt sich als Sonderfall der Amplitudenmodu-

lation deuten, die Trägerfrequenz wird einmal mit dem Faktor +1 und einmal mit dem Faktor -1 multipliziert. Die Vierphasenumtastung kann man sich aus zwei BPSK-Signalen entstanden denken, deren Trägerwellen um 90° phasenversetzt sind.

Wieder lässt sich mit etwas Mathematik zeigen, dass sich zwei gleichfrequente Trägerfrequenzen mit 90° Phasenverschiebung gegenseitig nicht beeinflussen, sofern man zur Modulation AM oder BPSK verwendet: Man kann sie daher mit unterschiedlichen Informationen modulieren. Vorteile:

- Der Phasenmodulator sitzt hinter dem Oszillator.
- Die Amplitude enthält keine Information und ist daher störsicherer.
- Es sind keine linearen Senderverstärker und linearen Empfänger nötig.

Nachteile:

- Die Phase ist im Empfänger nicht direkt messbar, nur Phasenänderungen.
- Das Frequenzspektrum ist prinzipiell breiter als bei AM, vergleichbar zur FM.

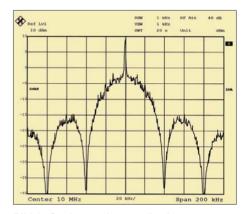


Bild 2: Spektrum des amplitudengetasteten Signals

Kombinierte Verfahren, Quadratur-Amplitudenmodulation (QAM)

Ist ein Übertragungsweg linear und besitzt einen guten Signal-Störabstand, lässt sich die Datenrate durch eine Kombination aus Amplituden- und Phasenmodulation erhöhen: Man verändert gleichzeitig Amplitude und Phase der Trägerwelle in feinen Stufen. Die Quadratur-Amplitudenmodulation bringt 4 bis 15 Bit in einem Modulationssymbol unter. QAM mit 16 Zuständen (4 Bit) und 64 Zuständen (6 Bit) finden auf Funkwegen Verwendung. Die Hauptanwendung höherer QAM-Verfahren mit 1024 bis 32 768 Zuständen sind die Modems und die DSL-Technik im leitungsgebundenen Bereich.

Vorteile:

 Es ist die beste Ausnutzung des Übertragungsweges in Bit pro Hertz Bandbreite möglich. Nachteile:

- Ein guter Signal-Störabstand ist nötig.
- Es ist ein linearer Übertragungsweg vom Sender bis zum Empfänger erforderlich.

Die Modulation im Zeitbereich und Frequenzbereich, Filterung des Datensignals

Schon bei Telegrafiesendern merkte man, dass ein hartes Ein-/Ausschalten der Trägerfrequenz die bekannten Klickstörungen in benachbarten Funkkanälen erzeugt. Ein passendes Tiefpassfilter in der Tastleitung löst das Problem, wenn die Taststufe (der Modulator) und der nachfolgende Sendeverstärker ein lineares Verhalten hat, also das kontinuierliche Ein- und Ausblenden des HF-Trägers zulässt. Wie ist der Tiefpass zu dimensionieren? Die Antwort fand Harry Nyquist schon vor 80 Jahren bei der Untersuchung von maschinell erzeugten Telegrafiesignalen:

- Der ungünstigste Fall ist eine Folge von Wechselbits (01010101...), das entspricht einer symmetrischen Rechteckschwingung: Ein Datenstrom mit 1 kBit/s stellt im ungünstigsten Fall eine Rechteckschwingung mit 500 Hz Grundfrequenz dar
- Es reicht, wenn die Grundfrequenz des Rechtecks durch den Übertragungsweg passt, die Oberwellen können weggefiltert werden. Allerdings kommt der Datenstrom dann als Sinus an und muss die Bitmitte finden, das ist die Aufgabe der Taktrückgewinnung.

■ Breitbandmodulation

Ein digitaler Datenstrom hat sehr steile Flanken (bei 74HC-Logik: Anstiegszeit < 10 ns), sein Spektrum erstreckt sich weit über die Datenrate hinaus. Wer mit einem ungefilterten Datensignal auf einen Modulator geht, erzeugt eine "Breitbandmodulation", die die Nachbar-Funkkanäle unbrauchbar macht. Der gleiche Effekt ergibt sich, wenn man ein an sich "zahmes" SSB-Sprachsignal durch Übersteuerung im Sender in ein Rechteck verwandelt oder die Endstufe die Signalbegrenzung übernimmt; manche Konteststationen hört man dann über ±300 kHz, und das liegt nicht an einem schlechten Empfänger!

Für die folgenden Beispiele wurde eine simple Amplitudentastung gewählt, als AM-Modulator dient ein Diodenringmischer mit einer Trägerfrequenz von 10 MHz. Der Datenstrom hat eine Datenrate von 40 kBit/s, für die Spektraldarstellung wurde der Datengenerator auf eine Pseudozufallsfolge mit 32 767 Bit Länge (2¹⁵ – 1) geschaltet.

Bild 1 zeigt die modulierte Trägerschwingung im Zeitbereich, die Bitlänge ist 25 μ s entsprechend 40 kBit/s Datenrate. Das zugehörige Spektrum ist in Bild 2 zu sehen; in

der Mitte sieht man die Trägerfrequenz, links und rechts die Seitenbänder, die sich weit über das dargestellte Frequenzfenster mit 200 kHz Breite erstrecken. Für mathematisch Interessierte: die Amplituden der Seitenbänder folgen der Funktion $(\sin x)/x$. Mit einem derartigen Signal werden die frequenzmäßig benachbarten Funkkanäle massiv gestört. Das Modulationssignal muss in passender Form gefiltert werden! Anschaulich ist zu vermuten, dass bei verringerter Flankensteilheit des Datensignals die belegte Bandbreite kleiner wird; auf den ersten Blick ist ein möglichst steilflankiger Tiefpass die Lösung, doch schauen wir uns das genauer an.

Richtiges Filtern des Modulationssignals

Die meisten ZF-Bandpässe in Amateurfunkgeräten sind auf rechteckige Durchlasskurve optimiert, denn die Flankensteilheit (Shape-Faktor) ist ein wichtiges Werbeargument – und dann sagen die Telegrafiespezialisten, Filter unter 250 Hz Bandbreite "klingeln" und sind somit kaum brauchbar. Da belegt ein Telegrafiesignal nur ein paar Hertz Bandbreite und passt durch ein 100-Hz-Filter nicht durch? Und dann sind die merkwürdig runden Durchlasskurven der ZF-Bandpässe im Spektrumanalysator, kriegen die Profis denn keine vernünftigen Fil-

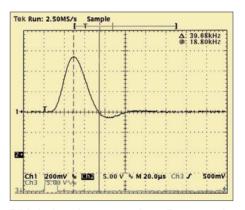


Bild 3: Impulsantwort eines Butterworth-Tiefpasses 3. Ordnung; Datenrate 40 kBit/s, Grenzfrequenz 19 kHz

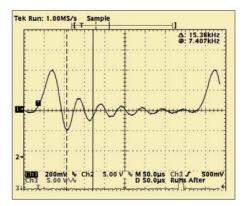


Bild 4: Impulsantwort eines Tschebyscheff-Tiefpasses 10. Ordnung; Datenrate 40 kBit/s, Grenzfrequenz 19 kHz

ter hin? Da hilft uns die Filtertheorie weiter: Speisen wir einen Tiefpass mit einem kurzen rechteckförmigen Spannungsimpuls oder geben wir auf einen Bandpass einen kurzen HF-Impuls auf der Filter-Mittenfrequenz, so sehen wir am Ausgang des Filters nicht nur den verschliffenen Originalimpuls, sondern nachlaufende "Echos", das ist das Klingeln der Telegrafiefilter. Je "besser" das Filter ist, desto mehr Echos sind in der Impulsantwort zu sehen. Bild 3 zeigt die Impulsantwort eines Butterworth-Tiefpasses (geringe Flankensteilheit) 3. Ordnung bei 40 kBit/s Datenrate und 19 kHz Grenzfrequenz. Die zweite Oszillogramm-Spur ist der Takt. Der Impuls ist schön verrundet und wir sehen zwei wichtige Dinge:

- Genau eine Bitzeit später hat die Impulsantwort einen Nulldurchgang, das Nachbarbit wird bei exakter Abfrage im Bitraster nicht beeinflusst.
- Es ist noch ein (negatives) Echo des Ursprungsimpulses zu sehen, seine Amplitude ist rund um den Faktor 10 kleiner als der erste Impuls.

Nun verwenden wir in Bild 4 einen supersteilen Tschebyscheff-Tiefpass 10. Ordnung mit nahezu rechteckiger Durchlasskurve. Die Datenrate ist wieder 40 kBit/s und die Grenzfrequenz 19 kHz. Nun sind zwölf Echos des Ursprungsimpulses als abklingender Sinus zu erkennen, dieses Filter ist nicht brauchbar.

Für die Filterung digitaler Signale ergeben sich damit folgende Erkenntnisse:

- Offensichtlich kann man das Digitalsignal mit einem Tiefpass filtern, dessen Grenzfrequenz der halben Datenrate entspricht, trotzdem bleiben die Bitmuster erkennbar
- Das Tiefpassfilter muss einen allmählichen Übergang in den Sperrbereich haben, damit kein "Klingeln" des Filter auftritt. Theoretisch optimale Lösungen sind das Gauß-Filter (als ZF-Bandpass im Spektrumanalysator verwendet) und das Kosinus-Rolloff-Filter mit einer kosinusförmigen Filterflanke.
- Der Butterworth-Tiefpass 3. Ordnung stellt anscheinend eine gute N\u00e4herungsl\u00f6sung dar.
- Durch kleine Variation der Filter-Grenzfrequenz kann man zusätzlich erreichen, dass die Impulsantwort des Filters gerade in der Mitte des nachfolgenden Bits einen Nulldurchgang hat, also die benachbarten Bits sich möglichst wenig beeinflussen.

Der Vorteil von Punkt 4 lässt sich nur dann richtig ausschöpfen, wenn wir auf der Empfangsseite den Bittakt in der richtigen Phasenlage wiedergewinnen und den Bitstrom jeweils in Bitmitte abtasten. Das zieht zwei zusätzliche Aufgaben nach sich: Wir müssen auf der Sendeseite dafür sorgen,

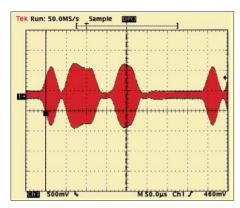


Bild 5: Amplitudentastung eines 10-MHz-Trägers im Zeitbereich mit Butterworth-Filterung

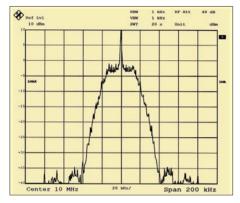


Bild 6: Spektrum des amplitudengetasteten Signals mit Butterworth-Filterung

dass unabhängig vom zu übertragenden Bitmuster genügend Bitwechsel auftreten, und wir brauchen im Empfänger eine Rückgewinnungsschaltung für den Bittakt, meist als PLL-Schaltung aufgebaut.

Den Erfolg der Filterung mit einem Butterworth-Filter zeigen Bild 5 im Spektralbereich und Bild 6 im Zeitbereich: Die ehemals rechteckige Hüllkurve der HF ist gleichmäßig verrundet und bei mehr als ±40 kHz vom Träger ist die Leistungsdichte praktisch Null.

■ Gestörte Übertragungswege

Die digitale Übertragungstechnik wurde mit dem Ziel eingeführt, die Qualität zu verbessern und gleichzeitig den Geräteaufwand zu verringern. In der Anfangszeit der digitalen Übertragungstechnik ging es darum, die Bitraten bis in den Gigabit-Bereich zu erhöhen, z. B. um die gigantische Bandbreite eines Lichtwellenleiters ausnutzen zu können. Das geht bei sorgfältig geplanten Übertragungswegen, die einen gutartig glatten Frequenzgang haben und nur durch Rauschen gestört werden. Genau diese Bedingungen sind auf Kabelwegen manchmal und auf Funkwegen meist nicht erfüllt.

 Auf langen Kabelwegen erzeugen Wellenwiderstands-Sprünge und nicht HFgerecht ausgeführte Verbindungen buckelige Frequenzgänge.

- Mehrwegeausbreitung in einem Funkfeld erzeugt durch Interferenz scharfe "Löcher" im Frequenzgang.
- Fremdsender stören sowohl im Kabelweg (Übersprechen von anderen Kabeladern, mangelhafte Schirmung) als auch im Funkweg bestimmte Frequenzen.

Die Bilder 7 und 8 zeigen bei DRM-Empfang aufgenommene Spektren mit stark gestörten Frequenzgängen. Als Abhilfen kommen infrage:

- Ist der Frequenzgang nicht allzu uneben, liefert ein Frequenzgang-Entzerrer gute Ergebnisse.
- Einige Funksysteme besitzen automatische Kanalwahl und suchen sich einen ungestörten Funkkanal.
- Bei Funkwegen wird Diversity-Technik verwandt; bei Frequenzdiversity überträgt man die Information auf zwei Frequenzen und hofft, dass eine ungestört ist. Bei Raumdiversity nutzt man aus, dass bei Mehrwegeausbreitung eine zweite, um einige Wellenlängen versetzte Empfangsantenne oft einen ungestörten Empfang liefert.

Bei einer schwierigen Richtfunkstrecke in Kalifornien hat man vor etlichen Jahren ein Verfahren aus Zweifach-Frequenzdiversity und Vierfach-Raumdiversity eingesetzt.

■ Vorteile der Multiträgermodulation

Das Verfahren der Frequenzdiversity kann noch konsequenter angewandt werden. Vor dem digitalen Zeitalter wurden Telefongespräche in Frequenzmultiplextechnik in Einseitenbandmodulation übertragen; das Verfahren war so gewählt, dass man sowohl Kabel- als auch Funkwege (Richtfunk oder Satellitenfunk) nutzen konnte. War ein Teilkanal gestört, so wurde er nicht benutzt. Bei einer gestörten Verbindung brach also die Übertragungsleistung nur leicht ein und die Verbindung riss nicht wie bei digitaler Übertragung ganz ab. Dieser Vorteil wurde nun wiederentdeckt, mit der Verfügberkeit enezieller Signal

mit der Verfügbarkeit spezieller Signalprozessoren war auch das Aufwandsargument gegen Frequenzmultiplexverfahren entfallen. Die Modulatoren und Filter für jeden Teilkanal können digital per Signalprozessor klein und preiswert realisiert werden. Eine ganze Reihe von Kabel- und Funksystemen setzt auf digitale Frequenzmultiplextechnik:

- Die ADSL-Technik (engl.: Asymmetric Digital Subscriber Line) verwendet 4 kHz breite Teilkanäle mit 4,3125 kHz Abstand.
- DAB (engl.: *Digital Audio Broadcasting*) arbeitet mit 1536 Teilkanälen in einem 1,5 MHz breiten Spektrum.
- DVB-T (engl.: *Digital Video Broadcas-ting*) setzt auf 2048 oder 8192 Teilkanäle in einem Fernsehkanal mit 7 MHz Breite.

– DRM (engl.: *Digital Radio Mondiale*) nutzt den 9 kHz breiten AM-Rundfunkkanal mit 40 bis 110 Hz (!) breiten Teilkanälen.

Selbst die Mobilfunkplaner denken nach der faktischen Pleite mit UMTS und Spreizspektrummodulation über Multiträgermodulation in der vierten Mobilfunkgeneration nach. Man darf nicht vergessen, dass eine Multiträgermodulation einen beträchtlichen Verwaltungsaufwand beinhaltet. Bei einer Zweiwegeverbindung können sich die Teilnehmer über Modulationsverfahren der Einzelkanäle und die Aussparung gestörter Kanäle absprechen. Bei Rundfunkverfahren packt man so viel redundante Information hinein, dass ein bestimmter Anteil der Kanäle nicht nutzbar sein kann. Ein unbestrittener Nachteil bisheriger Mul-

Ein unbestrittener Nachteil bisheriger Multiträgerverfahren ist die lange Synchronisationszeit: Ein DSL-Modem braucht je nach Leitungsqualität viele Sekunden, um sich mit dem Partner zu synchronisieren und eine Sendersuche im herkömmlichen Sinn ist bei digitalen Rundfunk- und Fernsehverfahren nicht möglich! Die Entwicklungen zu einem DRM-ähnlichen Amateurfunkverfahren laufen aber!

Fassen wir die Vor- und Nachteile von Multiträgerverfahren zusammen: Vorteile:

 Es ist gut geeignet für schlechte Übertragungswege mit stark welligem Frequenzgang oder scharfen Einbrüchen.

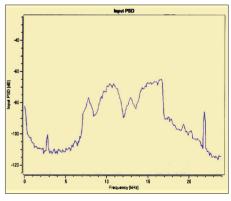


Bild 7: Sehr stark gestörter Frequenzgang bei DRM-Übertragung auf Kurzwelle

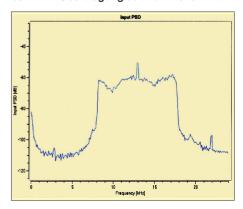


Bild 8: Stark gestörter Frequenzgang bei DRM-Übertragung auf Kurzwelle

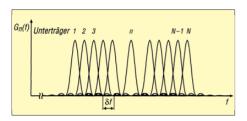


Bild 9: Trägerstaffelung bei orthogonaler Frequenzmultiplextechnik (OFDM)

- Der Frequenzgang braucht nur im Teilkanal eben zu sein.
- Im Teilkanal werden die Daten mit geringer Rate übertragen. Damit wird die Übertragung unempfindlich gegen Mehrwegeausbreitung. Bedingung ist aber: Der Laufzeitunterschied zwischen den Teilwellen am Empfangsort muss deutlich kleiner als die Symbollänge sein!
- Bei entsprechender Codierung dürfen einzelne Teilkanäle komplett ausfallen.

Nachteile:

- Das Modulationsspektrum ist mit erträglichem Aufwand nur über digitale Signalprozessoren erzeugbar.
- Es müssen Pilotkanäle zur Trägerrückgewinnung eingefügt werden.
- Der Synchronisationsvorgang dauert lange. Daher ist es für kontinuierliche Verbindungen geeignet.

Praktische Realisierung – DMT und OFDM

Der Begriff Digitale Multiträger-Modulation (DMT) ist nach dem eben Gesagten selbsterklärend. Im Zusammenhang mit Multiträger-Modulation wird auch der Begriff Orthogonal Frequency Division Multiplex (OFDM) verwendet. Orthogonal bedeutet rechtwinklig, aber was heißt das in der Übertragungstechnik? Beispielsweise sind eine Sinus- und eine Kosinusschwingung gleicher Frequenz orthogonal; multipliziert man sie miteinander, ist der Gleichanteil Null. Das wird seit vielen Jahren bei der Quadratur-Amplitudenmodulation beim PAL-Farbfernsehen ausgenutzt, um auf einer Trägerwelle zwei Kanäle zu übertragen.

An sich kann man bei einer Multiträgermodulation den Frequenzabstand der Teilträger frei wählen, solange sich die Spektren nicht überlappen. Doch es gibt Trägerabstände, bei denen die gegenseitige Störung minimal wird, das spart dann Filteraufwand.

Betrachten wir nochmal Bild 2: Obwohl das Datensignal nicht gefiltert ist, ergeben sich von alleine Nullstellen im Spektrum, die symmetrisch zur Trägerfrequenz im Abstand der Bitrate (besser Symbolrate) liegen. Es bietet sich daher an, den Frequenzabstand der Teilträger gleich der Symbolrate oder einem ganzzahligen Vielfachen zu wählen. Der erste Fall (die Stan-

dard-OFDM) gibt die dichteste Packung der Teilträger, trotzdem stören sich die Teilkanäle theoretisch nicht. Denn wir wissen bereits, dass die gesamte Information im Bereich der Trägerfrequenz plus/ minus der halben Symbolrate steckt. Bild 9 aus [1] zeigt das nochmals.

Mit einem Spektrumanalysator sieht man übrigens von den Teilträgern nichts, man erkennt nur wie in Bild 10 das annähernd rechteckförmige Gesamtspektrum!

■ Digital Radio Mondiale – die aktuelle Anwendung

In den letzten Jahren wurden einige digitale Rundfunk- und Fernsehverfahren eingeführt, deren Nutzen für Otto Normalverbraucher entweder zweifelhaft ist oder die die von Werbestrategen geweckten Erwartungen nicht erfüllen:

- Das Digitale Satellitenradio (DSR) wurde vor acht Jahren mangels Teilnehmerzahl eingestellt!
- Digital Audio Broadcasting (DAB) läuft seit Jahren im Regelbetrieb und sollte den UKW-Rundfunk ablösen. Es fehlt an preisgünstigen Empfängern, der Qualitätsgewinn gegen UKW ist nicht nennenswert und es ist bei den langen Nutzungszeiten von Rundfunkempfängern zweifelhaft, ob die Bürger 100 Mio. wertloser Radios allein in Deutschland akzeptieren. In den Nordländern denkt man über eine Einstellung von DAB nach...
- Digital Video Broadcasting (DVB) trat mit dem Ziel einer besseren Bildqualität an; es wird dazu genutzt, noch mehr Programme in unterster technischer Qualität (Datenrate unter 2 MBit/s) in die Übertragungswege zu quetschen. Mit modernen Großbildfernsehern sieht man die schlechte Bildqualität (tanzende Klötzchen) so richtig. DVB-T wird dem vollmundigen Werbeslogan "Überallfernsehen, viele Programme per Stabantenne" nicht gerecht. Ob DVB-H (Fernsehen auf dem Handy) ein Markterfolg wird, darf bezweifelt werden.

Nun ist DRM (Digital Radio Mondiale) dabei, den Mittel-und Kurzwellenrundfunk zu digitalisieren. Ist da ein Markterfolg zu erwarten? Ich meine ja, zwar kein Massenmarkt, aber eine interessante Ergänzung: ein deutlich hörbarer Qualitätssprung (beinahe UKW-Qualität) gegenüber dem AM-Rundfunk, zugleich weltweiter Empfang nur mit Stabantenne ohne weitere Infrastruktur. DRM besitzt folgende Eigenschaften:

- belegte Bandbreite 9 bzw. 10 kHz, wie bisher in den Lang-, Mittel- und Kurzwellenbereichen,
- Weiterverwendung vorhandener, moderner Sendeanlagen,

- sicherer Betrieb bei niedrigem Signal/ Störabstand,
- Stabilität gegen Mehrwegeausbreitung in der Ionosphäre,
- Bedienungskomfort wie bei modernen UKW-Empfängern mit Radio Data System (RDS).

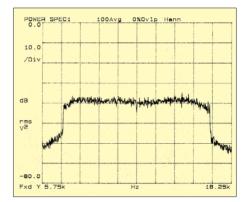


Bild 10: Spektrum eines DRM-Signals (geringe Auflösung) Screenshots: DB1NV

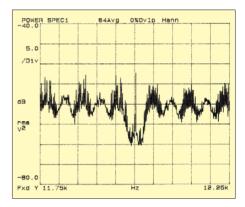


Bild 11: Spektrum eines DRM-Signals um Trägermitte (hohe Auflösung)

Dazu wurden folgende Teillösungen erarbeitet:

- Ein neues, effizientes Audio-Datenkompressionsverfahren (Adaptive Audio Coding mit Spectral Band Replication vom Fraunhofer-Institut) liefert mit einer Datenrate um 25 kBit/s UKW-Qualität.
- Die Übertragung arbeitet mit digitaler Frequenzmultiplextechnik (engl.: Orthogonal Frequency Division Multiplex, OFDM) und spaltet den 9-kHz-Kanal in 40 bis 110 Hz breite Unterkanäle auf, die mit niedriger Datenrate moduliert werden. Je nach Verfahren werden die Unterkanäle mit Vierphasenumtastung (2 Bit/Symbol) bis hin zu einer Quadratur-Amplitudenmodulation mit 64 Zuständen (6 Bit/Symbol) moduliert. Die lange Symboldauer macht das Verfahren unempfindlich gegen Mehrwegeausbreitung. Das Multiträgerverfahren besitzt genügend Redundanz, sodass der Ausfall eines Trägers durch Fading oder Störer korrigiert werden kann.
- Eine zeitliche Verschachtelung (Interleaving) der Datenworte über mehrere

odulationsformat
andard 9 kHz (LW, MW) und 10 kHz (KW); dazu gibt es "halbe Kanäle"
it 4,5 bzw. 5 kHz und "doppelte Kanäle" mit 18 bzw. 20 kHz.
Modi AD (siehe Tabelle 2); Modus A für nur mit Gaußschem Rauschen
estörtem Kanal bis Modus D für Kanäle mit zeitvariabler Mehrwegeausbreitung
it hohen Laufzeitunterschieden und Dopplerverschiebung
ast Access Channel (FAC) ist der Synchronisationskanal; Service Description
hannel (SDC) dient zur Decodierung der gemultiplexten Teildatenströme;
ain Sevice Channel (MSC) enthält die Nutzdaten
6,66 ms, 20 ms, 26,66 ms
nach Kanalbreite und Fehlerschutzstufe 655 kBit/s (theoretischer Bereich
872 kBit/s), meist werden 1525 kBit/s genutzt
50 Hz, 2250 Hz und 3000 Hz oberhalb der Kanalgrenzfrequenz
523 dB je nach Kanalmodell (nur Rauschen bis hin zu Mehrwegeausbreitung
it 6 ms Laufzeitunterschied und 4 Hz Dopplerverschiebung); unter günstigen
edingungen geht es mit 1011 dB Signal/Störabstand
aunhofer AAC (adaptive Audio Coding), optional mit SBR (Spectral Band
eplication) zur Erzeugung "synthetischer Höhen", wahlweise Mono oder Stereo
N N N N N N N N N N N N N N N N N N N

Tabelle 2: Parametervarianten der DRM-Übertragung

Modus		A	В	C	D	
Dauer Nutzsignal t _u [ms	s]	24	21,33	14,66	9,33	
Trägerabstand $1/t_{\rm u}$ [Hz]]	41,66	46,88	68,18	107,14	
Anzahl der Träger	9 kHz	204	182	1)	1)	
pro Kanal	10 kHz	228	206	138	88	
bei Kanälen	18 kHz	412	366	1)	1)	
mit Bandbreite	20 kHz	460	410	280	178	
Schutzintervall t_g [ms]		2,66	5,33	5,33	7,33	
Dauer Gesamtsymbol ts	$t_{\rm u} = t_{\rm u} + t_{\rm g} [\rm ms]$	26,66	26,66	20	16,66	
Symbole pro DRM-Rah		15	15	20	24	
1) nicht im Standard vorgesehen						

Hundert Millisekunden verbessert die Fehlerkorrektur bei Bündelfehlern.

Der Nachteil des Verfahrens ist, dass trotz spezieller Synchronisationskanäle die Erstsynchronisation sehr lange dauert. Dabei laufen folgende Teilschritte ab:

- Suche der Pilotkanäle, Trägersynchronisation und Feststellen des Übertragungsmodus
- Demodulation und Symbolsynchronisation der Nutzkanäle.
- Abwarten der Interleave-Periode,
- Fehlerkorrektur und Datenexpansion.

Der gesamte Vorgang dauert einige Sekunden, sodass eine "Sendersuche" im üblichen Sinn nicht möglich ist. Da moderne Weltempfänger über in EEPROMs gespeicherte Frequenzlisten und Sendefahrpläne verfügen, kann eine automatische Aktualisierung über einen der Datenkanäle des DRM-Systems die Lösung sein.

Digital Radio Mondiale kann und soll den normalen AM-Rundfunk nicht ersetzen, dazu ist die vorhandene Gerätebasis von vielleicht einer Milliarde zu groß. Es wird aber eine interessante Alternative für Urlauber sein. Die Heimatsender sind ohne Infrastruktur wie Internet oder Satellitenantenne einfach per Weltempfänger und Stabantenne empfangbar.

Lange Zeit fehlten stromsparende DSP-Demodulatoren und AAC-Audiodecoder, sodass die Demodulation nur mit passender Software (z.B. DREAM) durch PC oder Notebook möglich war.

Doch auch heute sind nur wenige Empfänger verfügbar, die meist auf dem RS500-Modul von *Radioscape* basieren [6].

Dieser Beitrag wurde mit freundlicher Genehmigung des Verlags UKW-Berichte aus [7], basierend auf einem Vortrag auf der UKW-Tagung in Weinheim/Bensheim 2006 [8], nachgedruckt.

jirmann@hs-coburg

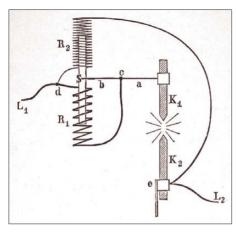
Literatur

- [1] Mäusl/Göbel: Analoge und digitale Modulationsverfahren, Hüthig-Verlag 2002
- [2] U. Freyer: DVB Digitales Fersehen, Verlag Technik 1997
- [3] G. Mahler: Die Grundlagen der Fernsehtechnik, Springer Verlag 2005
- [4] ETSI Technical Specification TS 101 980 Ver. 1.1.1 (September 2001)
- [5] BBC R&D White Paper WHP 064, Digital Radio Mondiale – revitalising the bands below 30 MHz, July 2003
- [6] Kuhl, H., DE8JOI: Digital Radio Mondiale (DRM): digitaler Hörfunk für LW bis UKW. FUNKAMATEUR 57 (2008) H. 12, S. 1282–1284
- [7] Jirmann, J., DB1NV: Vom Bit zur Multiträgermodulation – Die Grundlagen digitaler Modulationsverfahren. UKW-Berichte 47 (2007) H. 4, S. 217–231
- [8] Jirmann, J., DB1NV: Vom Bit zur Multiträgermodulation – Die Grundlagen digitaler Modulationsverfahren. In: DARC e.V., OV Weinheim (Hrsg.): 51. Weinheimer UKW-Tagung, Skriptum der Vorträge, Weinheim 2006, S. 10.1–10.12; FA-Leserservice *U-2006*

Licht und Kraft in deutschen Haushalten

DIETER GÖRRISCH - DL1MEH

Seit über 100 Jahren ist der elektrische Strom im Dienste des Menschen, doch nicht jeder konnte von Anfang an an dieser Revolution teilhaben. Doch wie erfolgte eigentlich die Elektrisierung privater Haushalte?


Zunächst sorgten einmal Gaslaternen und Petroleumlampen für Licht in deutschen Wohnzimmern. Ab 1880 entstanden in Deutschland die ersten Kraftwerke für elektrische Energie. Das Aufkommen elektrischer Leuchtmittel, wie etwa elektrische Glüh- und Bogenlampen, sorgte bei der Bevölkerung für Erstaunen und so reiste mancher sogar von fern her an, um erstmals in seinem Leben eine leuchtende Glühlampe zu sehen.

Während Industrie und kommunale Einrichtungen ihre elektrischen Einrichtungen mit eigenen Kraftwerken versorgten, blieben private Interessenten erst einmal völlig unberücksichtigt. Glück hatten noch diejenigen, die in der Nähe einer bereits elektrifizierten Fabrik wohnten, denn nicht selten wurde überschüssige Energie an die unmittelbaren Nachbarn verkauft. Auf diese Weise bildeten sich die ersten Keimzellen öffentlicher Stromversorgung. So wurden

auf den Dörfern wasserkraftbetriebene Getreidemühlen mit Generatoren nachgerüstet, die erstmals Häuser in der Nachbarschaft mit Strom versorgten und dem Mühlenbesitzer ein kleines Zubrot brachten. Doch Stom war noch keine Handelsware, das sollte erst noch kommen. Die Art der Stromgewinnung war schon damals vielfältig: Wasserkraft, Dampfturbinen oder Rohölmotoren trieben die ersten Generatoren an, alle technischen Möglichkeiten wurden eben ausgeschöpft. So gab es Gleich-, Wechsel- und Drehstromnetze mit völlig unterschiedlichen Spannungen.

Gleichstrom dominiert in den Städten

Da die ersten Netzbetreiber relativ wenige Kunden versorgten, entschied man sich besonders in den Städten häufig für Gleichstromversorgung mit 110 V Netzspannung. Dafür gab es damals gute Gründe: Gleich-

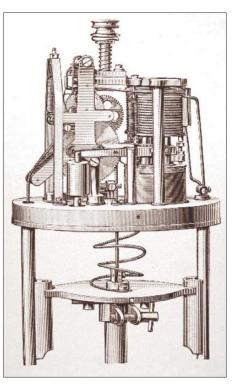
Prinzipschaltbild einer Bogenlampe mit Differenzialsteuerung; ein elektromagnetischer Mechanismus regelt den Abstand der Elektroden (K₁ und K₂) in Abhängigkeit vom fließenden Lampenstrom. Somit stabilisieren sich Lampenstrom, Elektrodenabstand und Lichtausbeute während des Betriebs.

Quelle: [1]

strom erzeugt ein flackerfreies Licht mit allen damals genutzten Leuchtmitteln und lässt sich direkt in Akkumulatoren speichern. Weiterhin gilt Gleichstrom bis zu 120 V als berührungssicher und erlaubt (mithilfe eines einfachen Vorwiderstands) die stufenlose Drehzahleinstellung von Antriebsmotoren. In verbrauchsarmen Zeiten (Nachtbetrieb) oder bei Generatorstillstand übernahmen parallelgeschaltete Akkumulatoren unterbrechungsfrei die Versorgung. Wegen der niedrigen Netzspannung waren lange Leitungswege wegen des unweigerlichen Spannungsabfalls allerdings nicht realisierbar. Folglich standen die ersten Elektrizitätswerke mitten in den Städten, machten bei Betrieb ordentlich Lärm und wurden deswegen nachts häufig abgeschaltet.

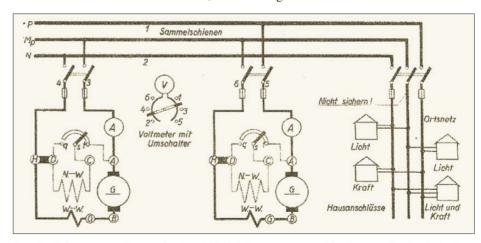
Die Versorgungsspannung hing freilich vom jeweiligen Netzbetreiber ab, und die Energie wurde über so genannte Dreileiternetze verteilt. Damit konnten Lichtstrom (110 V) und Kraftstrom (220 V) gleichzeitig zur Verfügung gestellt werden. Mit dem Anwachsen der Leistung und dem fortschreitenden Netzausbau wurden viele Stadtnetze auf die Spannungsebene 220 V/440 V umgebaut, zumal jetzt auch Glühlampen für Spannungen über 110 V gefertigt werden konnten.

Trotz dieser Vorteile setzten einige Erzeuger dennoch auf Wechsel- und Drehstromnetze, denn die Stromübertragung über längere Strecken oder in einen weiter entfernten Ort war mit Gleichstrom nicht zu machen – die Leitungsverluste waren trotz gigantischer Leiterquerschnitte einfach zu hoch. Das Privileg eines eigenen Elektrizitätswerks hatten ohnehin nicht alle Regionen, und so blieben Vorstädte und besonders der ländliche Raum häufig völlig unversorgt. Abgelegene Klöster, Gutshöfe


oder Herrschaftshäuser bauten sich gleich eigene Kraftwerke ins Haus. Siemens bot so genannte Hauszentralen mit Benzinmotor und Akkumulatorenpufferung für die zahlungskräftige Kundschaft an.

Entstehung der Überlandwerke

Wenn auch die Nutzung von Gleichstrom zunächst einmal zahlreiche Vorteile aufzubieten hat, besitzt Wechselstrom eine herausragende Eigenschaft: Mittels Transformatoren kann er auf hohe Spannungen transformiert und dann verlustarm über weite Strecken transportiert werden. Somit musste nicht jeder Ort ein eigenes Elektrizitätswerk bauen, sondern konnte elektrische Energie auch von einem entfernten Drittanbieter kaufen und über Leitungen heranführen. Dadurch gab es bereits von Anfang an viele Diskussionen, welche Stromart wohl die zukunftsträchtigere ist. Daher erzeugten zahlreiche Kraftwerke verschiedene Stromarten und Spannungsebenen. So konnten sie gleichzeitig regionale Verbraucher mit Gleichstrom und abgehende Fernleitungen mit Wechselstrom oder Drehstrom bedienen.


Es entstanden die so genannten Überlandwerke, die an geeigneten Stellen Wasserkraftwerke bauten und Drehstrom erzeugten. Der wurde hochgespannt und verlustarm an jeden Ort herangeführt und wie Handelsware verkauft. Vielfach musste der zugekaufte Strom an der Stadtgrenze wieder in Gleichstrom umgewandelt werden, um ihn ins Stadtnetz einspeisen zu können. Doch die ersten Schritte zur Fernversorgung nach heutigem Muster waren getan.

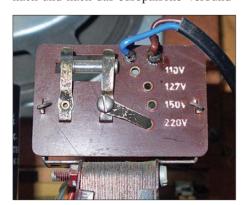
Leider war Deutschland damit mit einem Fleckenteppich inkompatibler Technik überzogen. In den Städten gab es Stromnetze mit unterschiedlichsten Kennwerten, was

Praktische Ausführung des Differenzialreglers, der Regelmechanismus war im Lampenkopf untergebracht. Bei 110 V Netzspannung konnten drei solcher geregelten Bogenlampen in Reihe geschaltet werden. Quelle: [1]

für die aufkeimenden Hersteller von Elektrogeräten schlicht eine Katastrophe war. Um den ganzen Markt zu befriedigen, mussten alle Geräte in einer Gleich- und einer Wechselstromausführung und dazu noch für verschiedene Versorgungsspannungen gebaut werden. Als Paradebeispiel sei an dieser Stelle der Volksempfänger VE 301 genannt, der anfangs der 30er-Jahre in drei unterschiedlichen Varianten für Gleichund Wechselspannungs- und Batteriebetrieb (für unversorgte Gebiete!) angeboten wurde. Auch Waschmaschinen und Küchengeräte kamen in Gleich- und Wech-

Das Dreileiternetz stellte zweimal 110 V Gleichspannung zur Verfügung, die durch Serienschaltung zweier Generatoren erzeugt wurden. Privathaushalte bekamen nur zwei Leitungen (MP und eine der beiden Phasen) und damit nur 110 V "Lichtstrom", industrielle Abnehmer alle drei Leitungen und damit auch die 220 V "Kraftstrom" zugeführt. Ein Teil des fließenden Stroms im Mittelleiter gleicht sich aus, der Leitungsquerschnitt des Mittelleiters konnte daher reduziert ausgeführt werden.

Geschichtliches


selstromausführung und für verschiedene Betriebsspannungen auf den Markt. Kein Wunder, dass viele Energieversorger auch gleich die größten Elektrohändler vor Ort waren und die passenden Elektrogeräte für ihr Netz verkauften. Neben elektrischen Leuchtmitteln zählten übrigens Bügeleisen und Waschmaschinen zu den begehrten Elektrogeräten privater Haushalte.

■ Erster Verbundbetrieb mehrerer Kraftwerke

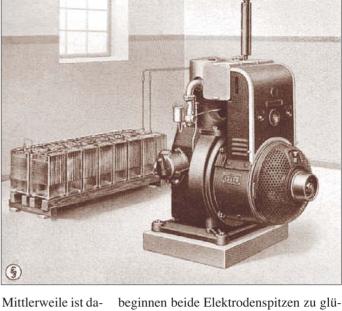
Spätestens nach dem ersten Weltkrieg hatte sich die Drehstromtechnik als zukunftsweisend herauskristallisiert, denn nur mit ihr waren die flächendeckende Stromversorgung über Fernleitungen und der Verbundbetrieb mehrerer Kraftwerke überhaupt möglich. Die Eigenschaften der verschiedenen Kraftwerksarten lassen sich vorteilhaft nutzen und die Versorgungssicherheit deutlich erhöhen. Dazu kam, dass die Schwerindustrie mit ihren aufwändigen Kohlekraftwerken in Mitteldeutschland (Ruhrgebiet, Bitterfeld usw.), die leistungsstarken Wasserkraftwerke aber fernab im Gebirge standen. Schon in den 30er-Jahren befürchtete man das Ausbluten der örtlichen Kohlevorräte und begehrte etwa die bayerische Wasserkraft.

Mithilfe der Drehstromtechnik und der ersten Hochspannungsfernleitungen heutiger Bauart entstanden die ersten Verbunde einzelner Großkraftwerke und schnell entstand in den 30er-Jahren der Begriff der Reichssammelschiene. Doch wegen der Verwundbarkeit der Fernleitungen während des zweiten Weltkriegs fand die Technik nicht überall Zuspruch.

Von einem flächendeckenden Verbundnetz war man ohnehin noch meilenweit entfernt. Dieses Ziel erreichte man erst in den 50er-Jahren in mehreren Schritten. Durch die Normung und Vernetzung aller regionalen Stromversorger und mithilfe grenzüberschreitender Fernleitungen zu den europäischen Nachbarstaaten entstand ab 1956 nach und nach das europäische Verbund-

Gewohntes Bild an Röhrenradios bis in die 60er-Jahre war der Spannungswähler zur Anpassung an die regionale Netzwechselspannung des Ortes.

Hausstromerzeuger
LM22 mit Akkumulatorpufferung der
Fa. Siemens &
Halske, wie er in
abgelegenen Gebieten zur Hausstromversorgung in den
30er-Jahren eingebaut wurde
Quelle: [2]


netz heutiger Prägung. Mittlerweile ist daraus ein äußerst robustes und flexibles Versorgungsnetz geworden. Durch den phasenstarren Zusammenschluss aller Generatoren ist die Netzfrequenz übrigens das einzige Kriterium für den Lastzustand unseres Verbundnetzes. Sinkt diese Frequenz unter einen bestimmten Wert, kann ein drohender Zusammenbruch des gesamten Stromnetzes vermutet werden. In einem solchen Fall hilft dann nur noch das schnelle Abschalten des überlasteten Netzabschnitts.

So sah die Stromeinspeisung eines Bauernhofs in den 40er-Jahren aus. Ein angeschlagenes Merkblatt gab darüber Auskunft, an welchen Zeiten keine elektrische Energie aus dem Netz entnommen werden durfte. Sonst drohte dem Netzbetreiber eine Überlastung!

■ Bogenlampen als Leuchtmittel

Ein eigenes Kapitel ist sicher die Entwicklung der elektrischen Beleuchtung. Eine besondere Rolle als leistungsstarke Lichtquellen spielten von Anfang an offene Bogenlampen. Das Prinzip einer Bogenlampe ist so simpel wie wirksam. Zwischen zwei Kohlestäben brennt nach Anlegen der Versorgungsspannung (Zündspannung > 60 V) und kurzer Berührung der beiden Elektroden ein offener Lichtbogen. Dabei

beginnen beide Elektrodenspitzen zu glühen und erzeugen extrem helles Licht. Lichtbogenlampen eigneten sich besonders für die Beleuchtung großer Plätze oder für Reklamezwecke. Wegen der Feuergefahr und der starken Rauchentwicklung fanden die offenen Bogenlampen in Privathaushalten allerdings kaum Anwendung. Dagegen wurden Bahnhöfe, öffentliche Plätze oder Fabrikhallen gerne mit diesem Lampentyp ausgeleuchtet.

Da die Kohleelektroden während des Betriebs buchstäblich abbrannten, musste ihr Abstand ständig nachgestellt werden. Nach einer gewissen Betriebszeit waren beide Elektroden verbraucht und mussten gegen neue Exemplare ausgetauscht werden. Die Elektroden aus reinem Kohlenstoff wurden bald durch veredelte Elektroden mit Beimischungen von Zusatzmaterialien ersetzt – die Lichtausbeute stieg damit noch einmal an.

Ein besonderes Problem war die Stromversorgung solcher Bogenlampen, die zum zuverlässigen Betrieb mit einer elektromagnetisch wirkenden Regelmechanik ausgerüstet wurden. Somit blieb der Innenwiderstand der Bogenlampe immer gleich und es war sogar eine Reihenschaltung mehrerer dieser Lampen möglich.

In einem 110-V-Netz konnten beispielsweise drei Bogenlampen in Reihe betrieben werden. Bald wurden Bogenlampen durch die immer leistungsfähigeren Glühlampen abgelöst, die völlig wartungsfrei sind.

In den 30er-Jahren traten Bogenlampen nochmals in Form extrem leistungsstarker Flakscheinwerfer in Erscheinung und noch bis in die 60er-Jahre kamen sie in Kinoprojektoren und Filmstudios zum Einsatz. Die moderne Variante der offenen Bogenlampen stellen heute übrigens Gasentladungslampen dar, bei denen Metalldampf zwischen den beiden Elektroden zum Leuchten gebracht wird.

dietergoerrisch@web.de

Literatur

- [1] Meyers Lexikon, Leipzig 1925, S. 1483 ff.
- [2] Siemens & Halske: Werbeschrift. Berlin 1934

DCF77-gesteuertes Frequenznormal mit Funkuhr und Sternzeit (3)

NORBERT GRAUBNER, DL1SNG; WULF-GERD TRAVING, DL1FAC

Die beiden ersten Teile der Beitragsserie zu diesem Bausatz beschäftigten sich ausführlich mit dem Schaltungskonzept und der praktischen Realisierung von Analog- und Digitalteil. Der letzte Teil beschreibt erprobte Antennenmodule und Untersuchungen zur Reichweite des DCF-77-Signals mit Experimenten an der Rauschgrenze. Auch die vielleicht wichtigste Frage wird beantwortet: Welche Frequenzgenauigkeit ist mit diesem Normal eigentlich erreichbar?

■ Antennenmodule mit Ferritstab

Lokalen Störungen lässt sich einfacher aus dem Weg gehen, wenn – wie beim beschriebenen Bausatz – ein abgesetztes Antennenmodul zum Einsatz kommt. Dessen Unterbringung an einem störarmen, wettergeschützten Ort dürfte kein großes Problem sein. Ferritstab und Schaltung passen in ein 25-mm-Elektroinstallationsrohr. Die mitgelieferte Platine lässt zwei unterschied-

den Senderstandort Mainflingen herum ist allerdings der Pegel so stark, dass der Empfänger übersteuert wird. Dies ist daran erkennbar, dass bei einem Pegel von etwa –62 dBm (hier liegt die Sättigungsgrenze des Empfängers) die Austastimpulse an der LED nur schwach oder gar nicht mehr zu sehen sind. In diesem Fall muss die Antenne mithilfe eines zusätzlichen Kondensators parallel zum Schwingkreis so weit nach unten verstimmt werden, bis

Bild 12: Ansicht der beschriebenen Ferritantennenmodule und der dazugehörigen Gehäuse; oben passive Version, unten aktive Version

Fotos: DL1SNG

liche Ausführungen zu, nämlich eine aktive und eine passive Version. Für den Empfang innerhalb ganz Deutschlands genügt eine fertig gewickelte und abgeglichene Ferritantenne mit angefügtem Kondensator. Da keine Koppelwicklung existiert, enthält die schmale Platine einen zweistufigen Spannungsfolger, der die am "heißen" Schwingkreisende anliegende hohe HF-Spannung an 50 Ω verfügbar macht (Bild 13). Das kommt einer erheblichen Leistungsverstärkung gleich, geht jedoch mit zusätzlichem Rauschen einher: das Hintergrundrauschen beträgt -112 dBm. Die Stromversorgung für diese einfache Schaltung liefert der Empfänger über das Koaxialkabel.

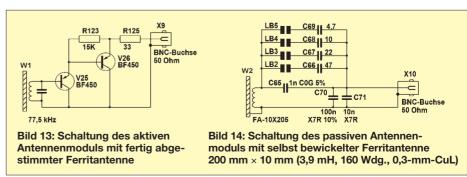
Überschlägige Berechnungen anhand von [8] und Vergleichsmessungen, die in Eutin an der Ostsee stattfanden, weisen darauf hin, dass mit dieser Aktivantenne eine Reichweite von etwa 1500 km zu erwarten ist. Für darüber hinausgehende Distanzen benötigen wir eine empfindlichere Antenne. Im Umkreis von weniger als 100 km um

die Pegelanzeige bei etwa –70 dBm liegt. Eine Vergrößerung der Schwingkreiskapazität um 33 pF vermindert dabei die Resonanzfrequenz um etwa 1 kHz. Ein Widerstand zur Bedämpfung ist keine gute Lösung, bei Einsatz eines Kondensators wird wegen der fallenden Flanke der Durchlasskurve die Spiegelfrequenz (78,750 kHz) besser unterdrückt.

Über den FA-Leserservice sind Ferritstäbe mit den Abmessungen 200 mm × 10 mm (FS-200×10) nebst Spulenkörper (FS10-WK)

erhältlich. Bewickelt mit 160 Wdg. 0,3-mm-CuL sind zusätzlich ein verlustarmer, stabiler Kondensator (C0G-Keramik) mit 1 nF und einige kleinere Werte für den Abgleich erforderlich (Bild 14). Beim Abgleich auf die genaue Frequenz und Ausgangsimpedanz leistet übrigens der FA-Antennenanalysator [9] wertvolle Dienste.

Bild 12 zeigt beide Antennenvarianten. Der Pegel der passiven Variante ist zwar etwa 20 dB niedriger als bei der aktiven Ausführung, doch hat der Empfänger eine genügend große Regelreserve, um das auszugleichen. Durch den geringeren Pegel reduziert sich der übersteuerungsfreie Mindestabstand zum Sender um den Faktor zehn. Wer noch näher bei Mainflingen wohnt, muss nicht den Schwingkreis verstimmen, sondern nur einen Abschwächer in die Leitung einfügen – was bei der aktiven Version des Antennenmoduls leider nicht möglich ist.


Untersuchungen zur Reichweite des DCF-Signals und zur sinnvollen Antennengröße

Bei sehr kleinen Antennen, die nur ein schwaches Nutzsignal liefern, wird die Reichweite in erster Linie vom Verhältnis zwischen Antennensignal und dem Rauschen des Vorverstärkers bestimmt. Auch das Rauschen der Verlustwiderstände in der Antenne kann eine Rolle spielen. Es scheint also sinnvoll, eine möglichst große Antenne zu verwenden.

Leider findet diese Überlegung durch das auf Langwelle sehr kräftige atmosphärische Rauschen ihre Grenzen; mit zunehmender Empfindlichkeit der Antenne übersteigt dieses das Eigenrauschen des Empfängers. Ab hier wird jede weitere Verbesserung der Antenne sinnlos.

Die Stärke des atmosphärischen Hintergrundrauschens gibt der Techniker üblicherweise als Rauschtemperatur (in Kelvin) an und ordnet sie dem Strahlungswiderstand der Antenne zu. Leider variiert in der Literatur, z. B. [10], die Rauschtemperatur bei 77,5 kHz in einem derart weiten Bereich (3 · 10⁸ bis 3 · 10¹⁶ K), dass damit beim besten Willen keine vernünftige kritische Antennengröße berechnet werden kann.

Ich (Norbert Graubner) habe deshalb versucht, die Frage durch Experimente zu lö-

sen. Als Messobjekt bot sich der russische Zeitzeichensender RBU an, der sich bei Moskau in einer Distanz von 2130 km zu meinem Wohnort nahe Mainz befindet und mit einer Leistung von nur 10 kW auf 66,667 kHz sendet. Wenn es gelänge, diese Station tagsüber, d. h. über die Bodenwelle zu empfangen, dann sollte es den Anwendern des DCF-Bausatzes ebenso möglich sein, die fünfmal stärkere Station DCF77 mindestens über die gleiche Distanz zu hören. Der genannte Radius reicht von Portugals Südküste über Kreta bis weit hinauf in den Norden Norwegens - der lokal unterschiedliche Rauschhintergrund bleibt allerdings unberücksichtigt. Für die Versuche speiste ich anstelle des 78,125-kHz-Signals ein LO-Signal mit 67,292 kHz in den Mischer ein und stimmte alle Eingangskreise (einschließlich der jeweils zu untersuchenden Antenne nebst Anpassung auf 50 Ω) sorgfältig auf 66,667 kHz ab.

Erwartungsgemäß kam über die kleine Ferritantenne mit 10 mm × 100 mm nichts Verwertbares herein. Etwas besser war schon die selbst gewickelte 200-mm-Ferritantenne; hier gelang der Empfang immerhin nachts. Erst mit einer selbst gebauten, abgestimmten Rahmenantenne in einer Größe von 1,25 m × 1,28 m hatte ich den gewünschten Erfolg - die Station RBU kam mit einem Tagespegel von -76 bis -80 dBm herein!

Um diese Antenne besonders unempfindlich gegen elektrische Nahfeldstörungen zu machen, wurde sie bewusst niederohmig ausgelegt: nur eine Windung aus 15mm-Kupferrohr mit einem Parallelkondensator von 0.94 uF. Der Parallelresonanzwiderstand lag bei 279 Ω , die Abwärtstransformation auf 50 Ω erfolgte mit einem Serienkondensator von 22,3 nF.

+			X
200	1 /		

Bild 15: Ausführung einer freitragenden Rahmenantenne aus 15-mm-Kupferrohr für bestmöglichen Fernempfang; das freie Ende ist mechanisch mit einem runden Kunststoffisolator fixiert, zur Abstimmung auf Resonanz dienen einige sehr verlustarme FKP-2-Kunststoffkondensatoren: die Leerlaufgüte liegt bei $Q_0 = 114$.

Aber musste es wirklich so ein Monstrum sein? Wo lag denn nun die optimale Größe einer Rahmenantenne? Etwa 1 kHz oberhalb von 66,667 kHz fand ich eine freie Stelle im Spektrum. Hier konnte ich (im November) über Tage hinweg einen RauschIch wollte nun nicht mehr eine Antenne mit der tatsächlich notwendigen Mindestgröße bauen - das wäre ein kleiner Rahmen von vielleicht 250 mm × 250 mm geworden. Wegen dessen geringer Induktivität hätte man einen riesigen Schwingkreiskonden-

Inter- 160-m- Ferrit 1) 3) Ferrit 1) 4) ADDX 3) Rahmenant	Tabelle	1: Kurzzei	tstabilität mit v	verschiedenen A	Antennen	
	Inter-	160-m-	Ferrit 1) 3)	Ferrit ^{1) 4)}	ADDX 3)	Rahmenanten

Idociic	I. ILGI EZCIUS	tubilitut iiiit vei	Scincuciicii 11		
Inter-	160-m-	Ferrit 1) 3)	Ferrit ^{1) 4)}	ADDX 3)	Rahmenantenne 1) 4)
vall	G5RV 4)	HKW 10×100	$FA\ 10 \times 205$	AT-5	1,6 m ²
[s]	-72 dBm ⁵⁾	-71 dBm ⁵⁾	-95 dBm ⁵⁾	-65 dBm ⁵⁾	-76 dBm ⁵⁾
0,1	$20.8 \cdot 10^{-9}$	$34,0 \cdot 10^{-9}$	$46,4 \cdot 10^{-9}$	1183 · 10 ⁻⁹	$27,3 \cdot 10^{-9}$
1	$10.8 \cdot 10^{-9}$	$11,5 \cdot 10^{-9}$	$15,2 \cdot 10^{-9}$	$21,2 \cdot 10^{-9}$	$13,7 \cdot 10^{-9}$
10	$2,7 \cdot 10^{-9}$	$2,5 \cdot 10^{-9}$	$2.9 \cdot 10^{-9}$	$3,6 \cdot 10^{-9}$	$3,1 \cdot 10^{-9}$
60	$0.5 \cdot 10^{-9}$	$1.6 \cdot 10^{-9}$	$1.3 \cdot 10^{-9}$	$0.2 \cdot 10^{-9}$	$0.7 \cdot 10^{-9}$

Tabelle 2: Kurzzeitstabilität beim Tag-Nacht-Vergleich

Inter-	Ferrit HKV	$V 10 \times 100^{2)(3)}$	ADDX AT-5	3)	Rahmenant	enne ^{1) 4)}
vall	Tag	Nacht	Tag	Nacht	Tag	Nacht
[s]	-71 dBm ⁵⁾	-68 dBm ⁵⁾	-65 dBm ⁵⁾	-63 dBm ⁵⁾	-76 dBm ⁵⁾	-71 dBm ⁵⁾
0,1	$53,4 \cdot 10^{-9}$	57,4 · 10 ⁻⁹	1183 · 10 ⁻⁹	$35,0 \cdot 10^{-9}$	$27,3 \cdot 10^{-9}$	$26,5 \cdot 10^{-9}$
1	$32,4 \cdot 10^{-9}$	$29,0 \cdot 10^{-9}$	$21,2 \cdot 10^{-9}$	$13.9 \cdot 10^{-9}$	$13,7 \cdot 10^{-9}$	$7,1 \cdot 10^{-9}$
10	$2.0 \cdot 10^{-9}$	$19,2 \cdot 10^{-9}$	$3,6 \cdot 10^{-9}$	$7.1 \cdot 10^{-9}$	$3,1 \cdot 10^{-9}$	$3,2 \cdot 10^{-9}$
60	$1,7 \cdot 10^{-9}$	$5,4 \cdot 10^{-9}$	$0.2 \cdot 10^{-9}$	$5,2 \cdot 10^{-9}$	$0.7 \cdot 10^{-9}$	$2,7 \cdot 10^{-9}$

Tabelle 3: Kurzzeitstabilität beim Vergleich der Aufstellungsorte am Tag

Inter-	Ferrit HKV	$V 10 \times 100^{3}$	Ferrit FA 10	× 205 ⁴⁾	
vall	Keller	Dachboden	Keller	Dachboden	
[s]	-71 dBm ⁵⁾	-70 dBm ⁵⁾	–95 dBm ⁵⁾	-95 dBm ⁵⁾	
0,1	$53,4 \cdot 10^{-9}$	$34,0 \cdot 10^{-9}$	$42,6 \cdot 10^{-9}$	$46,4 \cdot 10^{-9}$	
1	$32,4 \cdot 10^{-9}$	$11,5 \cdot 10^{-9}$	$19,8 \cdot 10^{-9}$	$15,2 \cdot 10^{-9}$	
10	$2,0 \cdot 10^{-9}$	$2,5 \cdot 10^{-9}$	$4.9 \cdot 10^{-9}$	$2,9 \cdot 10^{-9}$	
60	$1,7 \cdot 10^{-9}$	$1,6 \cdot 10^{-9}$	$1,4 \cdot 10^{-9}$	$1,3 \cdot 10^{-9}$	

1) auf dem Dachboden, 2) Keller, 3) aktiv, 4) passiv, 5) Pegel

pegel von -93 bis -96 dBm messen - das atmosphärische Hintergrundrauschen! Tatsächlich änderte sich an der Lesbarkeit des Signals von RBU nichts, wenn ich in die Antennenleitung einen 20-dB-Abschwächer einfügte. Das über die Antenne aufgenommene atmosphärische Rauschen war also mindestens 200-mal stärker als das Empfängerrauschen; eine deutlich kleinere Rahmenantenne musste ebenso gut funktionieren!

Als zugehörige Rauschtemperatur für den Strahlungswiderstand der Antenne ermittelte ich übrigens trotz der ruhigen Jahreszeit einen Wert, der nur knapp unterhalb der in [10] genannten Obergrenze lag $(1 \cdot 10^{16} \,\mathrm{K}).$

sator benötigt. Da die einzig verwendbaren, relativ verlustarmen Polypropylen-Metallfolienkondensatoren der Serie WIMA FKP nur in Werten bis maximal 33 nF zu bekommen waren [11], hätte ich Hunderte dieser Kondensatoren gebraucht.

Als Kompromiss habe ich eine Rahmengröße von 500 mm × 500 mm gewählt (Bilder 15 und 16). Tatsächlich war RBU auch hiermit tagsüber und nachts einwandfrei zu empfangen (Bild 17), der Pegel war mit -88 dBm etwa 11 dB schwächer als an der größeren Rahmenantenne; einen Unterschied im Signal-Rausch-Abstand konnte ich nicht beobachten.

Unter schwierigen Empfangsverhältnissen können also eigene Experimente mit einer abgestimmten, niederohmigen Rahmenantenne mit nur einer Windung und entsprechend großer Schwingkreiskapazität durchaus lohnend sein.

Kurzzeitstabilität

Zur Feststellung der erreichbaren Genauigkeit der erzeugten Normalfrequenz wurde das hochreine und gerade auf kurzen Zeitskalen extrem stabile 10-MHz-Ausgangssignal eines HP-Quarzofens (Hersteller US-Firma OFC) mit dem 10-MHz-Signal des DCF77-Frequenznormals verglichen, das seine Stärke, nämlich eine Genauigkeit auf Atomuhrniveau, nur auf langen Zeitskalen ausspielen kann. Das Signal des Quarzofens diente dabei als Zeitbasis für einen zehnstelligen Zähler mit 2 ns Auflösung (Philips PM6654). Mit Letzterem erfolgte dann die Auszählung des Signals der DCF77-Referenz. Die für den Vergleich verwendete Quarzzeitbasis (Quarzofen) lag übrigens, bezogen auf das DCF77-Signal, nur 8 mHz

zu hoch – dies nur als Hinweis auf die Qualität dieses Messgeräts.

Die Standardabweichung von jeweils 100 automatisiert durchgeführten Messungen gibt eine Vorstellung von der Höhe der Schwankungen des PLL-geregelten 10-MHz-Signals der DCF77-Referenz bei verschiedenen Torzeiten. Dabei ergab sich ein deutlicher Einfluss von Antennenart und Tageszeit auf die Kurzzeitstabilität des 10-MHz-Signals. Der Aufstellungsort war dagegen kaum von Bedeutung. Zum Vergleich wurden dabei auch zwei Antennenformen berücksichtigt, die eher für allgemeine Empfangszwecke gedacht sind, nämlich eine G5RV (mit Balun) für das 160-m-Band und eine über Dach montierte kommerzielle aktive Breitbandantenne vom Tvp ADDX AT-5. Die Tabellen 1 bis 3 zeigen die Ergebnisse.

Obwohl die G5RV für horizontale Polarisation vorgesehen ist und der verwendete Balun wegen seiner zu hoch liegenden unteren Grenzfrequenz den größten Teil der HF ableitete, lieferte sie tagsüber eine Frequenzstabilität, die auch die kommerzielle AT-5 nicht erreichte. Wohl kein Zufall ist der Ausreißer im 0,1-s-Messintervall (1183·10⁻⁹) bei der letztgenannten Antenne; all dies deutet auf eine gewisse Unruhe im Signal hin, vielleicht verursacht durch nahe gelegene UKW-Sender. Außerdem lag der Pegel dieser Antenne trotz einer Distanz von über 400 km hart an der Übersteuerungsgrenze des Empfängers (–62 dBm).

Eine aktive Breitbandantenne ist also für ein DCF77-Frequenznormal nicht die beste Wahl. Deutlich besser schneidet die kleine, abgestimmte, aktive Ferritantenne (10 mm × 100 mm) ab. Trotz hochgesteckter Erwartungen bringt die passive Variante mit dem 200-mm-Ferritstab keine klaren Vorteile bei der Kurzzeitstabilität. Das gilt auch für die Kupferrohr-Rahmenantenne (hier wurde eine Ausführung mit 1 m² Schleifenfläche verwendet). Nur bei sehr langer Zeitbasis (60 s) ist sie klar im Vorteil. Au-

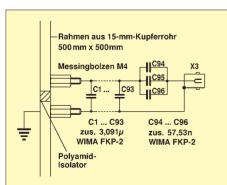


Bild 16: Schaltung der Kupferrohr-Rahmenantenne; C1 bis C93 sind auf einer durchkontaktierten Platine mit zwei Masseflächen niederohmig parallelgeschaltet. (Von der Rahmenantenne ist aus Platzgründen nur der Teil im Bereich der Anschlüsse dargestellt.)

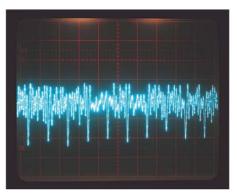


Bild 17: AM-demoduliertes Signal des russischen Zeitzeichensenders RBU 66,667 kHz; 10 kW ERP; 55° 44' N, 38° 12' O; Distanz 2130 km; Antenne: abgestimmte, passive Kupferohr-Rahmenantenne mit 500 mm \times 500 mm; Pegel: -88 dBm; aufgenommen am 17. 12. 08 um 13.20 Uhr MEZ

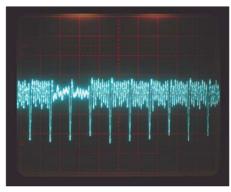


Bild 18: Wie Bild 17, jedoch nachts um 2.35 Uhr MEZ; Pegel: -79 dBm; der Abstand der Austastimpulse beträgt 100 ms. Der Träger dazwischen ist mit m = 0,698 und f = 100 Hz oder 312,5 Hz phasenmoduliert; siehe [12], [13]

ßerdem liefert sie – obwohl passiv – einen um immerhin 17 dB kräftigeren Pegel als die passive Ferritantenne und bestätigt damit ihre Eignung für ausgesprochenen Fernempfang.

Offenbar liegt die Kurzzeitstabilität an der Grenze des Möglichen. Im Vergleich zwischen Tag und Nacht zeigen sich deutliche Unterschiede, insbesondere bei mittleren Torzeiten - ein Hinweis, dass die Instabilität aus dem empfangenen Signal selbst stammt. Hier hilft dann auch die beste Antenne nicht weiter. Während tagsüber wegen der dämpfenden Wirkung der D-Schicht nur die Bodenwelle einfällt, überlagert sich nachts die Raumwelle, die durch die ständigen Bewegungen in der reflektierenden F-Schicht allen möglichen Änderungen in Polarisation, Intensität und Weglänge ausgesetzt ist. Die damit am Empfangsort einhergehenden Phasenverschiebungen beeinträchtigen die Kurzzeitstabilität. Trotz etwas schwächeren Pegels gewährleistet der Empfang am Tag Ergebnisse, die etwa um den Faktor drei stabiler sind als nachts.

Weniger deutlich ist die Abhängigkeit vom Aufstellungsort. Lediglich bei den kürzeren Zeitintervallen sind die Signale im Keller unruhiger als auf dem Dachboden, sicher eine Einwirkung des häuslichen Störnebels. Es versteht sich von selbst, dass die Antenne auf jeden Fall möglichst weit weg von Stromleitungen und Elektrogeräten mit störenden magnetischen Wechselfeldern, wie z. B. Fernseher (auch Plasmafernseher) oder Computermonitoren platziert werden sollte – auch wenn eingangs gesagt wurde, dass deren Einfluss dank des Superhet-Prinzips wesentlich geringer ist als bei den früheren Geradeausempfängern.

Zur Erläuterung: Eine Genauigkeit von beispielsweise $11.5 \cdot 10^{-9}$ (dies ist der gemessene 1-s-Tageswert bei der Ferritantenne mit $10 \text{ mm} \times 100 \text{ mm}$) bedeutet, dass die 10-MHz-Schwingung durchschnittlich um $\pm 57.5 \text{ mHz}$ abweicht. Auch auf kurzen Zeitskalen ist also mit Sub-Hertz-Genauigkeit zu rechnen. Bei einer Mittelung über 1 min erhalten wir bereits eine Genauigkeit von etwa $1.5 \cdot 10^{-9}$, die für die Kalibrierung aller im Amateurbereich eingesetzten Messmittel mehr als ausreichend sein dürfte. Ein hierauf basierender Oszillator fürs 2-m-Band hätte dort einen Fehler von nur 0.11 Hz.

Der Bausatz für dieses Frequenznormal wird aus weitestgehend vorbestückten Platinen und bearbeiteten Gehäuseteilen bestehen. Es ist geplant, ihn bis zum Ende des ersten Quartals 2009 fertigzustellen und in zwei Varianten anzubieten. Die eine soll nur das Frequenznormal enthalten (*BX-176*), die andere zusätzlich Funkuhr und PC-Netzwerkanschluss (*BX-177*) [14]. Der FA-Leserservice informiert, sobald Preise und Termine feststehen.

norbert.graubner@freenet.de dcf@dl1fac.de

Literatur und Bezugsquellen

- [8] Brummer, W.: Über die Ausbreitung von Mittelund Langwellen. http://members.aon.at/wabweb/ radio/grundl3.htm
- [9] Graubner, N., DL1SNG: Vektorieller Antennenanalysator als Handgerät im Selbstbau. FUNK-AMATEUR 56 (2007) H. 3, S. 282–285; H. 4, S. 394–399; H. 5, S. 506–507; Bausatz und Baumappe: www.funkamateur.de → Online-Shop → BX-110
- [10] Jacob, A. F.: Hochfrequenzübertragungstechnik, Script zur Vorlesung. TU Braunschweig, Institut für Hochfrequenztechnik; www.tu-braunschweig. de/Medien-DB/ihf/hfu.pdf
- [11] Bürklin OHG; Höherweg 245; 40231 Düsseldorf; www.buerklin.com
- [12] Meinberg Funkuhren GmbH & Co KG: Lexikon-Fachbegriffe.
 - www.meinberg.de/german/glossary/rbu.htm
- [13] ITU Radio Communication Sector: Characteristics of standard-frequency and time-signal emissions in allocated bands and characteristics of stations emitting with regular schedules with stabilized frequencies, outside of allocated bands. www.itu.int/ITU-R/study-groups/docs/rsq7-SF TS Characteristics-en.doc
- [14] FUNKAMATEUR-Leserservice: Box 73 Amateurfunkservice GmbH, Berliner Straße 69, 13189 Berlin, Tel. (0 30) 44 66 94-60, Fax -69, bzw. Online-Shop: www.funkamateur.de → Online-Shop

Wissenswertes über Transistoren

FRANK SICHLA - DL7VFS

Dass viele Transistoren innerhalb eines Typs – oft mit den Buchstaben A, B oder C – noch weiter klassifiziert sind, ist allgemein bekannt. Auch weiß man mehr oder weniger genau um die Bedeutung dieser Klassifizierung. Aber was heißt das eigentlich für die Praxis?

In Europa werden Transistoren nach der Pro-Electron-Norm gekennzeichnet. Der erste Buchstabe sagt hierbei etwas über das Halbleitermaterial aus, beispielsweise bedeutet das häufig anzutreffende B Silizium. Der zweite Buchstabe kennzeichnet die Grundfunktion: C steht beispielsweise für einen NF-Kleinleistungstransistor, D für einen NF-Leistungstransistor, F für einen HF-Kleinleistungstransistor oder S für einen Kleinleistungs-Schalttransistor.

Ein eventueller dritter Buchstabe ist für den Anwender ohne Bedeutung. Die folgende meist dreistellige Zahl in der Typenbezeichnung dient nur der weiteren Unterscheidung der einzelnen Typen.

Vielleicht bemerkenswert: Den Transistor-Grundtyp (bipolar oder unipolar) verrät der Kennzeichnungscode nicht. Das trifft auch für andere Transistorcodes zu. Ein BF245 ist beispielsweise ein Feldeffekt, ein BF254 ein Bipolartransistor.

ABC der Bipolartransistoren

Nun kann noch ein Buchstabe folgen, dieser informiert bei bipolaren Kleinleistungstypen über die Stromverstärkung $h_{21\mathrm{e}}$ bzw. bei bipolaren Leistungstypen über die maximale Kollektor-Emitter-Spannung $U_{\mathrm{CE0_max}}$ beispielsweise gemäß Tabelle 1.

Tabelle 1: Kennzeichnung bipolarer Transistoren (Beispiel)						
Suffix	h_{21e}	U _{CE0_max}				
ohne	-	45 V				
A	40150	60 V				
В	120460	80 V				
C	270800	100 V				

Dieses Schema ist oft bei npn-Transistoren anzutreffen, aber zumindest bezüglich h_{21e} nicht bindend; etwa bei den pnp-Transistoren BC556...560 sieht die Klassifizierung ganz anders aus:

A 110...220

B 200...450

C 420...800

Möglich ist auch eine weitere Zahl nach einem Schrägstrich. Diese betrifft die Kleinsignal-Stromverstärkung h_{21e} :

16 maximal 250

25 maximal 400

40 maximal 630

Wie findet der Praktiker nun den passenden Transistor? Indem er die Größen $h_{21\mathrm{e}}$ und U_{CE0max} richtig einschätzt!

Folgendes gilt es zu wissen:

1. Die Spannungsverstärkung einer nicht gegengekoppelten Emitterstufe ergibt sich als Quotient von Gleichspannung über dem Kollektorwiderstand $U_{\rm RC} = (U_{\rm b} - U_{\rm C})$ zur Temperaturspannung $U_{\rm T}$ (26 mV bei Zimmertemperatur) und ist somit in guter Näherung von $h_{\rm 21e}$ unabhängig – siehe Kasten. Strom- und somit Leistungsverstärkung sind allerdings zu $h_{\rm 21e}$ proportional. Man sollte also $h_{\rm 21e}$ nicht überschätzen. Bezüglich des oft im Vordergrund stehenden Parameters

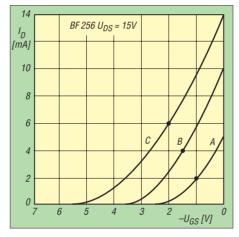


Bild 1: Eingangskennlinien beim BF256

"Spannungsverstärkung" ist $h_{21\mathrm{e}}$ bedeutungslos. Nur wenn der Eingangswiderstand recht hoch sein soll, wird man zum C-Typ greifen. Der Kennwert gilt bei 1 kHz. Mit sinkendem Abstand zur Transitfrequenz f_{T} nähern sich die Werte von A-, B- und C-Typ immer mehr an.

2. Der Wert für $U_{\text{CE0_max}}$ ist praxisfremd, denn hier wird eine freie Basis vorausgesetzt (Ziffer 0). Das gilt übrigens ebenso für eine weitere scheinbar unverzichtbare Spannungsangabe im Datenblatt: die Kollektor-Basis-Spannung $U_{\text{CB0_max}}$. Beim Vergleich beider Grenzwerte bei verschiedenen Transistortypen stellt sich heraus, dass $U_{\text{CE0_max}}$ oft 25...50% niedriger als $U_{\text{CB0_max}}$ ist. (Ausnahmen bestätigen auch hier die Regel.)

Dies hat zwei Konsequenzen für die Anwendung:

– Da beim Transistor im Linearbetrieb die Basisspannung $U_{\rm B}$ nur um etwa 600 mV

größer als die Emitterspannung $U_{\rm E}$ ist, bestimmt $U_{\rm CB0_max}$ praktisch die maximale Kollektor-Emitter-Spannung.

Da die Spannungsbelastbarkeit bei einem Widerstand zwischen zweiter und dritter Elektrode (dann R statt 0 im Index) zunimmt, kann man einen Transistor wählen, dessen U_{CBO_max} mindestens gleich der maximal auftretenden Kollektor-Emitter-Spannung ist und hat dann noch die vom guten Ingenieur immer großzügig gewählte Sicherheitsreserve.

■ Spezifizierung bei Sperrschicht-FETs

Ein wichtiges Charakteristikum des selbst sperrenden unipolaren Transistors ist der Drainstrom bei $U_{\rm GS}=0$, den man mit $I_{\rm DSS}$ abkürzt. Wegen des pn-Charakters des Eingangs eines SFETs kann man diesen Transistor bei $U_{\rm GS}=0$ jedoch nur in eine Richtung aussteuern, Linearbetrieb ist also lediglich mit Vorspannung möglich.

Bei den oft verwendeten selbst sperrenden n-Kanal-Typen muss hierfür die Gate-Spannung kleiner als die Source-Spannung sein. Dafür sorgt ein Source-Widerstand.

Der $I_{\rm DSS}$ schwankt von Typ zu Typ und ist oft auch innerhalb eines Typs spezifiziert (angehängter Buchstabe A bis D). Als Beispiel sei der bekannte BF256 angeführt:

A 3... 7 mA

B 6...13 mA

C 11...18 mA

Bild 1 zeigt die typischen Verläufe. Die Bedeutung von $I_{\rm DSS}$ ergibt sich aus dem Zusammenhang mit der Abschnürspannung (Pinch-off-Spannung) $U_{\rm P}$. Liegt diese zwischen Gate und Source an, ist der FET gerade gesperrt. Der Betrag dieser negativen Spannung $U_{\rm P}$ wächst mit $I_{\rm DSS}$. Beim BF256 sieht das so aus:

A typisch 2,5 V

B typisch 3,5 V

C typisch 5,5 V

 $U_{\rm P}$ bestimmt nun aber die Aussteuerbarkeit des Eingangs. Der linear aussteuerbare Bereich ist etwas kleiner als $U_{\rm P}$. Beim BF256 kann man die maximal mögliche unverzerrte Aussteuerbarkeit gemäß Tabelle 2 festlegen.

Tabelle Ausste	e 2: uerbarkeit be	im BF256
Suffix	Berechnung	Wert
A	U _{GS} –1 V	max. ±1 V
В	U_{GS} -1.5 V	max. ±1,5 V
C	U_{GS} -2 V	max. ±2 V

Dabei fließen folgende typischen Drainströme:

A 2 mA

B 4 mA

C 6 mA

Diese Werte sind deutlich kleiner als die minimalen I_{DSS} -Werte! Das bedeutet auch

einen Rückgang der Steilheit gegenüber der Datenblattangabe für $U_{\rm GS}=0$ bzw. $I_{\rm DSS}$ von minimal 4,5 mS. Aus den Kennlinien in Bild 2 geht hervor, dass die Steilheit nun mit jeder Spezifikation auf typisch etwa 3,7 mS abgesunken ist.

Beim FET ist die Spannungsverstärkung wie beim bipolaren Transistor proportional zum Arbeitswiderstand. Vergrößert man einen Kollektorwiderstand, baut sich darüber mehr Gleichspannung auf. Die Spannungsverstärkung steigt, denn die Temperaturspannung ist bekanntlich eine Konstante. Beim FET lässt sich die Spannungsverstärkung einfacher als Produkt von Steilheit und Arbeitswiderstand berechnen (was beim Bipolartransistor über den Umweg $S \approx I_{\rm C}/U_{\rm T}$ ebenso – nur eben umständlicher – gelänge).

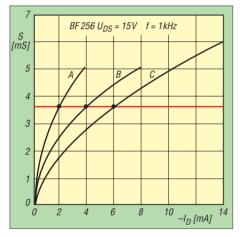


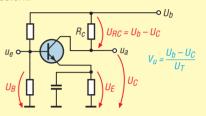
Bild 2: Steilheit und Drainstrom beim BF256

Nun aufgepasst: Je kleiner $I_{\rm DSS}$, umso kleiner ist praktisch auch der Ruhestrom und umso größer kann der Arbeitswiderstand bei gegebener Versorgungsspannung gewählt werden. Das bedeutet wiederum: Je kleiner $I_{\rm DSS}$, umso größer kann man praktisch die Spannungsverstärkung auslegen.

Für möglichst hohe Spannungsverstärkung ist also die Klassifizierung A zu bevorzugen. Die Eingangs-Aussteuerbarkeit ist hier zwar am kleinsten, allerdings ist das bei leicht möglichen Spannungsverstärkungen um 20 dB unbedeutend – die Eingangs-

Spannungsverstärkung in Emitterschaltung

Bild 5 zeigt eine nicht gegengekoppelte Emitterschaltung.


Der Transistor ist nicht nur ein stromgesteuertes Bauelement, sondern liefert auch einen Ausgangsstrom, sodass sich erst durch einen Außenwiderstand eine Spannung ergibt. Die Stromverstärkung ist daher ein wichtiger Kennwert. (Man unterscheidet zwischen der Großsignal-Stromverstärkung B bei hohen Gleichströmen und der Kleinsignal-Stromverstärkung b oder b bei kleinen 1-kHz-Strömen).

Würde man einen Transistor also als *Strom*verstärker betreiben, hätte man es leicht: Die Verstärkung ließe sich direkt dem Datenblatt entnehmen: Ausgangsstrom gleich Stromverstärkung mal Eingangsstrom $(I_a = \beta \cdot I_a)$.

In den meisten Fällen versteht man unter einem Verstärker aber einen Spannungsverstärker. Die exakte Herleitung der im Text sowie in Bild 5 genannten einfachen Praktikerformel für $V_{\rm u}$ ($U_{\rm b}$ hier Betriebsspannung, nicht zu verwechseln

mit der Basisspannung $U_{\rm B}$) findet man z. B. in [1], [2] oder [3]. Die Formel wird im Prinzip immer unsicherer, je größer der Ausgangsstrom ist. Die Praxis zeigt jedoch, dass dies kaum problematisch ist.

Noch ein Wort zur Temperaturspannung $U_{\rm T}=26$ mV: Diese errechnet sich als Boltzmann-Konstante mal Temperatur durch Elementarladung (kleinste vorkommende freie elektrische Ladung) zu 26 mV – bei Zimmertemperatur. Der Name rührt daher, dass für diese Spannung lediglich eine Temperaturabhängigkeit besteht.

Bild 5: Emitterschaltung

Aussteuerbarkeit von ± 1 V ginge ja bei 20 dB mit ± 10 V Aussteuerungs-Spielraum am Ausgang einher, hier würde also praktisch die Grenze liegen. Bei Schaltungen mit B- und C-Typen sieht das ähnlich aus. Bild 3 vergleicht drei für maximalen Ausgangs-Aussteuerspielraum dimensionierte Schaltungen. Man müsste in jedem Fall die Betriebsspannung erhöhen, um die durch $U_{\rm P}$ gegebene Eingangs-Aussteuerbarkeit voll ausnutzen zu können.

Zur Spezifizierung C wird man in zwei Fällen greifen:

- 1. Drainschaltung (Impedanzwandler): Hier wird oft eine hohe Aussteuerbarkeit gefordert, etwa bei aktiven Tastköpfen.
- Elektronischer Schalter: Beim hier wichtigsten Kriterium Ein-Widerstand R_{DS_on} zeigen sich deutliche Unterschiede, wie am Beispiel BF256 in Bild 4 erkennbar. Bei C ist dieser Widerstand deutlich kleiner als bei A und B.

■ Fazit

Die oft mit den angehängten Buchstaben A, B und C erfolgende Spezifizierung bei Transistoren betrifft mit h_{21e} und I_{DSS} auf den ersten Blick wesentlich erscheinende Kennwerte. Bei näherer Betrachtung stellt sich aber heraus, dass h_{21e} keine und I_{DSS}

geringe Bedeutung für die Spannungsverstärkung hat, dem oft wichtigsten Kriterium einer Verstärkerstufe. Denn diese wird im Wesentlichen von Kollektor- bzw. Drainwiderstand bestimmt.

Möglicherweise überraschen könnte die Tatsache, dass die $I_{\rm DSS}$ -Spezifikation A bei gleicher Betriebsspannung den höchsten Drainwiderstand und somit die höchste Spannungsverstärkung sicherstellt.

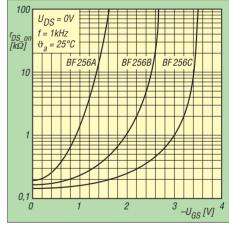
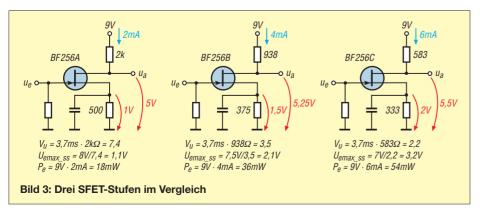



Bild 4: Ein-Widerstand über $U_{\rm GS}$ beim BF256

Andererseits sollte man die Bedeutung der Stromverstärkung in Emitterschaltung $h_{21\mathrm{e}}$ (Kleinsignal) bzw. B (Großsignal) und des Drainstroms bei Gate-Source-Spannung null I_{DSS} im *nichtlinearen* Betrieb nicht unterschätzen. Hier bestimmen diese Parameter die Schalter-Ansteuerleistung bzw. den Ein-Widerstand. *sichla@t-online.de*

Literatur

- [1] Tietze, U.; Schenk, C.: Halbleiter-Schaltungstechnik. 12. Aufl., Springer-Verlag, Berlin, Heidelberg 2002
- [2] Göbel, M.: Analoge Schaltungen. 3. Aufl., Springer-Verlag, Berlin, Heidelberg 2008
- [3] Seifart, M.; Becker, W.-J.: Analoge Schaltungen. 6. Aufl., Verlag Technik, Berlin 2003

Was Sie schon immer über Kondensatoren wissen wollten (5)

WOLFGANG GELLERICH - DJ3TZ

Im abschließenden Teil beleuchten wir mit den Doppelschichtkondensatoren eine Bauform, die erst in den vergangenen Jahren so richtig publik wurde, obwohl ihre Eigenschaften bereits seit 130 Jahren bekannt sind.

■ Doppelschichtkondensatoren

Unter allen Kondensatorarten erfährt der Doppelschichtkondensator gegenwärtig mit Abstand die größten Bemühungen, was Forschung und Entwicklung angeht. Die eigentliche Konstruktion wurde aber bereits im Jahr 1879 durch Hermann Ludwig Ferdinand von Helmholtz (1821–1894) beschrieben, siehe Bild 66. Das folgende Zitat aus der damaligen Veröffentlichung [28] fasst bereits alle aus heutiger Sicht wesentlichen Merkmale eines Doppelschichtkondensators in einem Satz zusammen: Einen Fall wirklicher molecularer Berührung zweier Leiter mit der Fähigkeit zu einem Potentialsprunge von wechselnder Grösse bieten uns metallische Electroden in einem Electrolyten, der durch die angewendete electromotorische Kraft nicht zersetzt werden kann.

DER PHYSIK UND CHEMIE.

NEUE FOLGE BAND VII.

I. Studien über electrische Grenzschichten; von H. Helmholtz. 1)

Die bisherige Theorie der Vertheilung der Electricität in leitenden Körpern hat nur die aus den Wirkungen in die Ferne bekannten Kräfte dieses Agens in Rechnung gezogen und ist dadurch zu der Folgerung gekommen, dass Electricität, wenn sie sich in einem oder mehreren Körpern in das Gleichgewicht setzt, das Innere der Körper ganzlich verlässt und nur auf der Oberfäche derselben eine unendlich dünne Schicht bildet. Dass in der That diese Schicht sehr dünn sei, und im Innern der Leiter nur verschwindend kleine Mengen von Electricität zurückbleiben, zeigen alle diejenigen Versuche, bei denen man einen electrisirten Leiter sich gegen eine ihn vollständig umschliessende und isolirte leitende Hülle entladen lässt und nach deren Entfernung seinen electrischen Zustand untersucht.

Solange wir es nur zu thun haben mit einer einfachen electrischen Grenzschicht eines Leiters, der ohne Sprung im Werthe der Potentialfunction die benachbarten Leiter oder Isolatoren berührt, entsteht durch die Annahme eines in unendlich dünner Schicht ausgebreiteten endlichen Quantums von Electricität, dessen Raumdichtigkeit also unendlich gesetzt werden muss, auch keine weitere Schwierigkeit, da das Arbeitsäquivalent eines jeden Theils einer solchen electrischen Anhäufung, welches dem halben

 Im Auszuge veröffentlicht in den Monatsberichten der Berlin Akademie 27. Februar 1879.
 Ann. 4. Phys. u. Chen. N. F. VII.

Bild 66: So fing alles an: Bereits 1879 veröffentlichte H. Helmholtz in den Annalen der Physik und Chemie die grundlegende Wirkungsweise des Doppelschichtkondensators.

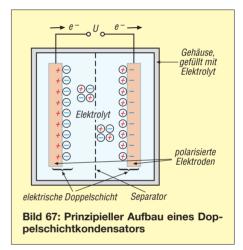
Quelle: [28]

Bekannt geworden sind vor allem die um 1980 von Panasonic unter dem Markennamen *Goldcap* eingeführten Doppelschichtkondensatoren, die bei Abmessungen einiger aufeinander gestapelter Münzen Kapazitäten bis 10 F erreichen, wie Bild 71 zeigt.

Kommerzielle Produkte auf dem heutigen Stand der Technik realisieren im Format einer Streichholzschachtel Kapazitätswerte von mehreren Hundert bis zu einigen Tausend Farad. Zu den führenden Herstellern gehören beispielsweise die WIMA aus Mannheim [29] und Maxwell Technologies [30]. Vermutlich durch die extrem hohe Kapazität motiviert, findet man für Doppelschichtkondensatoren auch reißerische Bezeichnungen wie *Superkondensator* oder *Ultracapacitor*. Eine gebräuchliche englische Bezeichnung lautet DLC (engl. *double layer capacitor*).

■ Funktionsweise

Doch durch welche Besonderheit erreicht man diese außergewöhnlich hohen Kapazitäten auf geringstem Raum? Nach Gleichung (1) aus dem ersten Teil dieses Beitrags steigt die Kapazität, wenn:

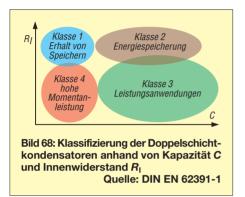

- der Abstand zwischen den Platten sinkt,
- die Plattenfläche vergrößert wird oder
- die relative Permittivität des Isolators zwischen den Platten vergrößert wird.

Alle drei Bedingungen tragen zur hohen Kapazität der Doppelschichtkondensatoren bei. Wie Bild 67 zeigt, besteht der Kondensator aus zwei Elektroden, die in einen Elektrolyt eintauchen. An die Elektroden wird eine Spannung angelegt. Eine ganz ähnliche Anordnung findet man auch in Akkumulatoren und bei der elektrochemischen Elektrolyse. Im Gegensatz zu diesen tritt beim Doppelschichtkondensator aber keine Ladung zwischen den Elektroden und dem Elektrolyt über. Demzufolge findet auch keine elektrochemische Reaktion statt, ganz so, wie es Helmholtz bereits anno 1879 formulierte.

Eine wesentliche Voraussetzung für die Funktion eines Doppelschichtkondensators ist, dass die angelegte Spannung einen von der chemischen Zusammensetzung vorgegebenen Wert nicht übersteigt. Unter diesen Umständen stehen sich die entgegengesetzten Ladungen an der Berührungsfläche zwischen Elektrode und Elektrolyt gegenüber – und zwar in einem extrem geringen Abstand. Helmholtz gab die Größe dieses Abstands mit dem 2 475 000sten Teil eines Millimeters an, was umgerechnet etwa 0,4 nm sind. Dieser Wert entspricht mit verblüffender Genauigkeit den heute ge-

nannten Werten [29]. Aus Gleichung (1) erkennt man, dass ein derart geringer Plattenabstand eine sehr große Kapazität zur Folge hat.

Der zweite Faktor ist eine sehr große wirksame Plattenfläche, die durch den Einsatz hochporöser Elektrodenmaterialien erreicht wird. Was hat es damit auf sich? Ein dicker Baumstamm lässt sich kaum entzünden. Je kleiner die Stücke sind, in die man das Holz zerhackt, desto leichter und schneller verbrennt es. Die als Verpackungsmaterial verwendete Holzwolle ist noch leichter entzündbar und verbrennt sehr schnell. Holzstaub kann sogar explodieren, was in Sägewerken ein ernsthaftes Sicherheitsproblem darstellt. Der Grund dafür, dass die chemische Reaktion der Verbrennung so unterschiedlich schnell abläuft, besteht in der unterschiedlich großen Oberfläche des Holzes.



Die chemisch aktive Oberfläche ist auch der Ausgangspunkt der Vorgänge im Inneren eines Doppelschichtkondensators, die sich ausschließlich an der Grenze zwischen dem Elektrodenmaterial und dem Elektrolyt abspielen. In Doppelschichtkondensatoren erreicht man eine große wirksame Oberfläche der Elektroden durch den Einsatz hochgradig poröser Stoffe. Ein bereits in frühen Doppelschichtkondensatoren [31] eingesetztes und nach [32] auch heute noch viel verwendetes Material ist Aktivkohle, der man eine innere wirksame Oberfläche von 3000 m²/g zuschreibt.

Der dritte Grund für die rekordverdächtigen Kapazitätswerte ist die hohe relative Permittivität der isolierenden Schicht, die von der chemischen Zusammensetzung abhängt und in der Größenordnung von 40 liegt [29]. Hier muss man sich nochmals verdeutlichen, dass die Betriebsspannung eines Doppelschichtkondensators so niedrig gewählt wird, dass an den Elektroden kein Ladungsübertritt in den Elektrolyt und demzufolge auch keinerlei Stromfluss durch den Elektrolyt stattfinden. Der Elektrolyt wirkt also als Isolator.

■ Abgrenzung vom Akkumulator

Dem Aufbau nach sehen Doppelschichtkondensatoren den wiederaufladbaren Akkumulatoren sehr ähnlich. Der wesentliche Unterschied besteht darin, dass die Ladungsspeicherung im Akkumulator durch eine elektrochemische Reaktion erfolgt, in deren Verlauf sich die Zusammensetzung des chemisch aktiven Materiales an den Elektroden verändert. Im Gegensatz dazu erfolgt die Ladungsspeicherung im Doppelschichtkondensator ausschließlich elektrostatisch und ohne eine stoffliche Veränderung an den Elektroden.

Aus der unterschiedlichen Wirkungsweise ergeben sich auch unterschiedliche Eigenschaften: Doppelschichtkondensatoren sind in der Lage, sehr hohe Ladeströme aufzunehmen. Bei Akkumulatoren ist der maximale Ladestrom dagegen auf einen vergleichsweise sehr geringen Wert begrenzt. Aus dieser Eigenschaft ergeben sich bedeutsame Anwendungsgebiete für den Doppelschichtkondensator. Umgekehrt vertragen Doppelschichtkondensatoren auch sehr hohe Entladeströme, was ebenfalls weitere Einsatzmöglichkeiten erschließt.

Die Spannungsverläufe beim Entladen eines Akkumulators und eines Doppelschichtkondensators sind unterschiedlich. Während die Spannung eines Kondensators beim Entladen mit konstantem Strom gleichmäßig sinkt, bleibt die Spannung eines Akkumulators dagegen während der Entladung im Wesentlichen konstant und bricht nach fast vollständiger Entladung stark ein.

Akkumulatoren erreichen eine Lebensdauer zwischen einigen Hundert bis zu wenigen Tausend Lade-Entlade-Zyklen, wobei einige der wesentlichen Alterungsmechanismen aus der umkehrbaren chemischen Reaktion an den Elektroden resultieren. Ein Doppelschichtkondensator hat wegen des fehlenden Stoffumsatzes dagegen keine Verschleißerscheinungen an den Elektroden.

Handelsübliche Exemplare erreichen bis zu einer Million Zyklen. Die Energiedichte ist bei Doppelschichtkondensatoren mit Werten bis etwa 6 Wh/kg erheblich geringer als bei Akkumulatoren, die bis zu 180 Wh/ kg erreichen können.

■ Unterschiede zu herkömmlichen Kondensatoren

Von der außerordentlich hohen Kapazität einmal abgesehen, haben Doppelschichtkondensatoren noch weitere Unterschiede zu den klassischen Kondensatorbauformen: Die Lebensdauer eines Doppelschichtkondensators ist mit maximal einer Million Lade- und Entladevorgängen sehr gering. Ein keramischer Kondensator im Schwingkreis eines Mittelwellenradios durchlebt pro Sekunde (!) eine Million solcher Vorgänge. Außerdem vertragen Doppelschichtkondensatoren nur Spannungen von wenigen Volt. Beim Einsatz für Anwendungen mit größeren Spannungen kann man zwar mehrere Kondensatoren in Serie betreiben, muss dann aber durch Schutzschaltungen dafür sorgen, dass die Spannung gleichmäßig aufgeteilt wird.

Die Art der Ladungsspeicherung im Doppelschichtkondensator macht beim Laden und Entladen einen Ladungstransport innerhalb des Elektrolyts erforderlich. Dieser erfolgt relativ langsam. Die wirksame Kapazität sinkt daher stark mit steigender Frequenz. Doppelschichtkondensatoren heutiger Bauart sind im Wesentlichen nur für den Betrieb an Gleichspannung gedacht.

Bauformen und Anwendungsgebiete

Zum praktischen Aufbau von Doppelschichtkondensatoren gibt es eine riesige Anzahl von Möglichkeiten. Bild 69 gibt eine Übersicht über bisherige Produkte und gegenwärtige Forschungsrichtungen. Die heute aus kommerzieller Fertigung erhältlichen Doppelschichtkondensatoren unterscheiden sich stark in den Eigenschaften und haben demzufolge auch sehr vielseitige Einsatzmöglichkeiten.

DIN EN 62391-1 befasst sich mit Elektrischen Doppelschichtkondensatoren zur Verwendung in Geräten der Elektronik und legt insbesondere auch Verfahren zur Messung der relevanten Größen eines Doppelschichtkondensators fest. Aufgrund der unterschiedlichen Einsatzgebiete unterscheidet die Norm vier Klassen von Einsatzgebieten, siehe Bild 68.

Klasse 1 (Erhalt von Speichern): Doppelschichtkondensatoren aus dieser Klasse dienen hauptsächlich zum Puffern der Energieversorgung von Computerspeichern, wobei man mit Entladeströmen in der Größenordnung einiger Nanoampere bis Mikroampere rechnet. Kondensatoren für diese Anwendungen verfügen über eine relativ geringe Kapazität und einen hohen Innenwiderstand.

Klasse 2 (Energiespeicherung zur Versorgung von Antriebsmotoren): Kondensatoren dieser Klasse können Entladeströme von einigen Milliampere bis zu vielen Ampere entnommen werden, wobei eine hohe Kapazität und ein hoher Innenwiderstand vorhanden sind.

Klasse 3 (hohe Leistung): Kondensatoren der Klasse 3 werden zur Energiespeicherung im Langzeitbetrieb eingesetzt, wo sie Entladeströme von einigen Milliampere bis zu vielen Ampere abgeben können. Sie besitzen eine hohe Kapazität und einen kleinen Innenwiderstand.

Klasse 4 (hohe Momentanleistung): Kondensatoren dieser Klasse sind für Anwendungen vorgesehen, die während einer kurzen Betriebsdauer einen hohen Entladestrom verlangen. Die Kapazität ist relativ gering und der Innenwiderstand niedrig.

Zur Klasse 1 gehören beispielsweise die bekannten Goldcap-Modelle, die einen relativ hohen Innenwiderstand aufweisen und zur Stabilisierung der Betriebsspannung in Digitalschaltungen eingesetzt werden. Kon-

(grau), Metalloxiden (rot) und Polymeren (blau) **Quelle: [32]**

Bild 70: Inneres einer induktiv betriebenen Taschenlampe mit Doppelschichtkondensator als Energiespeicher

densatoren dieser Art finden auch als Energiespeicher in weniger anspruchsvollen Bereichen Verwendung.

Als Beispiel zeigt Bild 70 das Innenleben einer Taschenlampe, die ohne Batterien oder Akkumulatoren auskommt. Zur Speicherung elektrischer Energie ist ein Doppelschichtkondensator mit 1 Feingebaut, Bild 71. Geladen wird dieser Kondensator durch die hinten im Bild erkennbare Spule. In dieser befindet sich ein Magnet, der sich auf einem Stab durch die Spule bewegt, wenn man die Taschenlampe schüttelt. Die dabei entstehende Induktionsspannung richten Dioden gleich und leiten sie in korrekter Polarität zum Kondensator weiter. Bei dieser Anwendung hat der Doppelschichtkondensa-

tor den Vorteil, in sehr kurzem Zeitraum hohe Ladeströme aufnehmen zu können.

Dasselbe Prinzip soll auch bei größeren Anwendungen realisiert werden. So gibt es beispielsweise Ansätze zum so genannten regenerativen Bremsen. Die Idee ist dabei, die beim Bremsen zu beseitigende Bewegungsenergie des Fahrzeugs nicht wie bisher nutzlos in Wärme umzusetzen, sondern in elektrische Energie zu wandeln. Dabei entsteht die elektrische Energie allerdings mit Strom- und Spannungswerten, die bisher kaum nutzbar waren. Leistungsfähige Doppelschichtkondensatoren können hier als kurzfristig extrem aufnahmefähige Puffer eingesetzt werden.

Bild 71: Doppelschichtkondensator aus der in Bild 70 gezeigten Taschenlampe Fotos: DJ3TZ

Die gespeicherte Energie lässt sich später über einen Schaltregler in einen Akkumulator übertragen. Von dort kann die Energie dann vom Fahrzeug wieder verwendet werden. Doch dazu sind sehr leistungsfähige Doppelschichtkondensatoren erforderlich. Von WIMA wird beispielsweise ein *Super*

Cap mit 400 F angeboten, der einen Nennstrom von 80 A besitzt und für eine Spannung von maximal 2,5 V ausgelegt ist. Das Modell ist mit äußeren Abmessungen von 48 mm × 26,5 mm × 59 mm recht kompakt und wiegt auch nur 95 g. Conrad Electronic bietet diesen Kondensator an (Artikel-Nr. 450785, 99,95 €). Von Maxwell Technologies [30] gibt es noch wesentlich größere Doppelschichtkondensatoren. Der Boostcap BCAP3000 P270 weist 3000 F auf und ist mit einem Innenwiderstand von lediglich 0,29 mΩ bestens zur Aufname von Spitzenströmen geeignet.

Umgekehrt sind solche Kondensatoren auch in der Lage, kurzfristig sehr hohe Ströme abzugeben, um beispielsweise einen Dieselmotor anzulassen. dj3tz@darc.de

Literatur

- [28] Helmholtz, H.: Studien über electrische Grenzschichten. Annalen der Physik und Chemie, 1879, Band 7, S. 337–382, als PDF abrufbar: http:// zs.thulb.uni-jena.de/receive/jportal_jparticle_ 00120992
- [29] Fischle, H.: Superkondensatoren, made by WIMA. www.wima.de/EN/article_supercap.htm
- [30] Maxwell Technologies: Ultracapacitor. www.maxwell.com/ultracapacitors
- [31] Becker, H. I.: Low Voltage Electrolytic Capacitor.
 Patent US 2,800,616, www.uspto.gov → Patent
 → Search Patent → View Patent Full-Page Images
 → 2800616
- [32] Fischle, H.: Superkondensatoren für Pufferanwendungen. Elektronik components 2008, S. 34–40

Wärmeerzeugung und Kühlung

HORST BAUMANNS

Veranlasst durch Beiträge wie im FA 3/2008 zur Lüftung eines Netzteils [1] werden nachfolgend die Zusammenhänge um die Erwärmung und Wärmeabführung, sowohl in Bezug auf einzelne Bauteile als auch auf komplette Geräte, grundlegend erklärt.

Die Wärme in immer kleineren und leistungsfähigeren Geräten in entsprechend kleinen Gehäusen abzuführen ist eine Aufgabe, die insbesondere bei Eigenbauten nicht immer gut gelöst wird. Dieser Beitrag soll dem Anwender das Verständnis erleichtern.

Alle elektronischen Bauteile wie Transistoren, integrierte Schaltkreise (kurz ICs), Widerstände und ggf. Röhren haben die Eigenschaft, neben ihrer Nutzenergie auch mehr oder weniger Wärme (Verlustleistung $P_{\rm V}$) zu erzeugen. Diese Wärme muss entsprechend abgeleitet werden. So gilt die grundsätzliche Aussage: Ein Gerät oder ein Bauteil wird so heiß wie die Summe aller Wärmeerzeuger minus der Kühlung.

■ Einzelne Bauelemente

Die Wärmeerzeugung bei Transistoren oder ICs läuft im Inneren der Bauteile ab. Vom

eigentlichen Kristall bis nach außen zur Kühlfläche sind einige Wärmewiderstände zu überwinden. Die erforderliche Gesamtkühlfläche hängt von den mechanischen Ausdehnungen des Bauelements, der maximalen Umgebungstemperatur ϑ_{U} und der zu erwartenden Verlustleistung $P_{\rm V}$ ab. Die Sperrschichttemperatur $\vartheta_{\rm I}(J)$ steht für *junc*tion, engl. Sperrschicht) setzt sich aus der Umgebungstemperatur ϑ_{U} und aus dem durch die Wärmeableitung vom Kristall zur Umgebung am Wärmewiderstand R_{th} entstehenden Temperaturabfall $(\vartheta_{\rm J} - \vartheta_{\rm U})$ zusammen – siehe Bild 1. Da ϑ_{U} kleiner als ϑ_{J} ist, kann Wärme vom Kristall abgeleitet werden.

Der Wärmeableitung steht der Wärmewiderstand entgegen. Er ist der Proportionalitätsfaktor, der die Beziehung zwischen der Übertemperatur des Bauelements gegenüber der Umgebung und der Verlust-

leistung herstellt. Seine Einheit ist K/W, siehe Kasten. In den entsprechenden Datenblättern der Hersteller sind die Werte der einzelnen Bauteile zu finden.

Zur Kühlflächenberechnung müssen mehrere thermische Widerstände unterschieden werden; das sind der innere thermische Widerstand $R_{\rm thJG}$, also jener zwischen Sperrschicht und Gehäuse, die Übergangswiderstände zwischen den einzelnen Montageflächen $R_{\rm thGK}$ (Gehäuse \rightarrow Kühlfläche) und der äußere thermische Widerstand der kühlenden Fläche bzw. des Kühlkörpers $R_{\rm thK}$ (Kühlfläche \rightarrow Luft), also

$$R_{\rm th} = R_{\rm th\,JG} + R_{\rm th\,GK} + R_{\rm th\,K}.\tag{1}$$

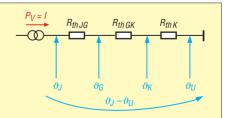


Bild 1: "Schaltbild" des Wärmeleitungsprozesses; der Wärmestrom I [W] wird durch die Verlustleistung $P_{\rm V}$ hervorgerufen und entspricht dem elektrischen Strom beim Ohmschen Gesetz – die Temperaturen den Spannungen.

Es gilt nun

$$\vartheta_{\rm I} - \vartheta_{\rm IJ} = P_{\rm V} \cdot R_{\rm th} \,, \tag{2}$$

woraus sich der erforderliche (maximale) Wärmewiderstand des Kühlkörpers $R_{\rm th\,K}$ berechnen lässt. Dazu kann man sich des Online-Kühlkörperrechners [5] im Internet bedienen. Bild 2 zeigt ein Beispiel. Anhand dessen lässt sich nun aus Herstellerkatalogen ein passender Kühlkörper heraussuchen.

Wer eine einfache Kühlfläche bevorzugt, berechnet deren Fläche gemäß

$$A_{\rm K} = \frac{1}{h_{\rm K} \cdot R_{\rm th\,K}},\tag{3}$$

wobei $h_{\rm K}$ der Wärmeübergangskoeffizient der Kühlfläche ist. Im Allgemeinen liegt dieser zwischen 10 und 20 W/(m² · K), eine gute Näherung ist $h_{\rm K} = 15$ W/(m² · K). Aus $R_{\rm th\,K} = 3,05$ K/W gemäß Bild 2 erhalten wir $A_{\rm K} = 0,0219$ m² bzw. 219 cm².

Maßeinheiten der Temperatur

Obwohl die Temperatur üblicherweise in Grad Celsius [°C] angegeben wird (Formelzeichen Theta, ϑ), ist die SI-konforme Maßeinheit der Temperatur**differenz** das Kelvin [K]. Für Temperaturdifferenzen gilt 1 K = 1 °C, für den Absolutwert der Temperatur gilt bekanntlich ϑ /°C = T/K – 273,15.

Wichtig ist ferner die Form des Kühlblechs, eine quadratische Form ist zu bevorzugen und das Bauteil ist mittig anzuordnen.

Die Übergangswiderstände $R_{\rm thGK}$ zwischen Gehäuse und Kühlkörper (Glimmerscheibe, Wärmeleitpaste usw.) sind genau genommen mit zu berücksichtigen, was in Bild 2 durch die Schätzung $R_{\rm thGK}=1~{\rm K/W}$ erfolgte; eine leicht überdimensionierte Kühlung ist in jedem Falle besser, um einen Schaden zu vermeiden. Im Übrigen ist Wärmeleitpaste immer nur so dick wie unbedingt nötig aufzutragen, sie soll lediglich Lufteinschlüsse unterbinden.

Ferner ist eine senkrechte Luftführung anzustreben. Das Anblasen durch einen Lüfter ist die wirkungsvollste Methode zur Kühlung. Der Luftstrom sollte parallel zur Kühlfläche geführt werden und ohne Verwirbelung das Gehäuse verlassen können. Innerhalb des Gehäuses darf kein Luftstromkurzschluss auftreten.

Bei im Impulsbetrieb arbeitenden Bauteilen, was bei den Transistoren in SSB-Sendern quasi zutrifft, sollte man den Kühler etwas kräftiger als berechnet ausführen. Aus der größeren Masse des Kühlers resultiert eine größere Speicherkapazität $C = c \cdot m$, die für die kurzzeitige Aufnahme der Wärme besser geeignet ist. Auch die Formel

$$Q = m \cdot c_p \cdot (\vartheta_e - \vartheta_a) \tag{4}$$

zeigt uns anhand der unterschiedlichen spezifischen Wärmekapazitäten c_P für Luft und Aluminium (s. Tabelle 1), dass die Konvektion (Wärmestrahlung) durch die Luft die kurzzeitigen Wärmeimpulse nicht schnell genug ableiten kann.

■ Wärme im Gerät

Die Wärmeenergiebilanz eines elektronischen Geräts wie Netzteil, Rechner, Empfänger oder Sender geht aus der Gleichung

$$P_{\rm Anschluss} = P_{\rm Nutz} + P_{\rm V} \tag{5}$$

hervor. Hierbei wird folgende Formel zum Gesamtüberblick über die erzeugte Wärme wichtig. Die abzuführende Wärmemenge Q, auch als Verlustwärme bekannt, errechnet sich nach

$$Q = V \cdot \rho \cdot c_{p} \cdot (\vartheta_{i} - \vartheta_{a}) \tag{6}$$

wobei V Luftvolumen und $c_{\rm p}$ die spezifische Wärmekapazität der Luft (bei konstantem Druck) sind, $\vartheta_{\rm i}-\vartheta_{\rm a}$ der Temperaturdifferenz des Geräts zur Außenluft entspricht und ρ die Dichte ($\rho={\rm m}/{\rm V}$) der Luft ist.

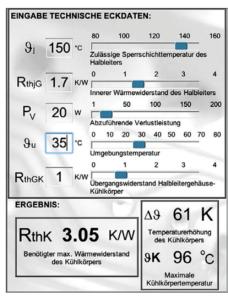


Bild 2: Berechnung des maximalen Wärmewiderstands eines Kühlkörpers mittels des Online-Rechners [5] Screenshot: Red. FA

Wer hierbei einmal Werte einsetzt, z. B. 1 dm³ bis 3 dm³ freie Luftführung im Gerät, wird erkennen, dass eine vorgegebene Temperaturgrenze bereits mit sehr wenigen Watt schnell erreicht wird. Häufig sind jedoch nicht einmal 3 dm³ freier Luftraum vorhanden!

Tabelle 1 lässt außerdem anhand der Wärmeübergangskoeffizienten von ruhender und bewegter Luft erkennen, wie wirkungsvoll eine Kühlung mittels Lüfter ist.

Um das Verständnis des Verhaltens der Luft beim Wärmeübergang aus dem Gerät heraus zu vertiefen, kann man mit der Formel

$$Q = h \cdot A \cdot (\vartheta_{i} - \vartheta_{a}) \cdot t \tag{7}$$

Tabelle 1: Benötigte Werte für Wärmeübergangskoeffizient Metall/Luft, spezifische Wärmekapazität und Dichte [1], [4]

Dicinte [1], [4]	J		
Medium		h [W/	$(\mathbf{m}^2 \cdot \mathbf{K})$]
ruhende Luft		5,82	. 9,3
bewegte Luft, v	r = 10 m/s	46,52	.69,78
bewegte Luft, v	r = 20 m/s	93,04	.116,3
Medium	$c_{\rm p} [{\rm J/(l}$	(g·K)]	$\rho [\text{kg/m}^3]$
Luft	1005*		1,128**
Aluminium	0,897		2710
*) Mittelwert be	ei 40 °C	ahhänaia	

) Mittelwert, da luftdruckabhängig

den Übergang abschätzend berechnen. Dabei bereitet die exakte Ermittlung des Wärmeübergangskoeffizienten h meist Schwierigkeiten, da sie von mehreren Faktoren abhängt (u. a. Lage wärmeerzeugender Bauelemente innerhalb des Geräts sowie Oberflächenbeschaffenheit der Innenseiten des Gehäuses). Ferner ist die Art der Strömung im Gerät zusätzlich ausschlaggebend, d. h., ob laminare gleichmäßige Strömung oder Verwirbelungen mit Luftkurzschluss vorherrschen. Für die Luftführung an glatten Flächen gilt ungefähr [2]

 $h/(kJ/(m^2 \cdot K)) = 4.8 + 3.4 \cdot v/(m/s).$

In [3] wird als Beispiel für eine Walzhaut

$$h/(kJ/(m^2 \cdot K)) = 5.0 + 3.4 \cdot v/(m/s)$$

bei einer Strömungsgeschwindigkeit von etwa $v \le 5$ m/s angeführt. Diese empirischen Werte resultieren aus den Berechnungen Nu = f(Re, Pr, Gr) der Nu, Re-, Grund Pr-Zahl bei erzwungener Konvektion (Nu – Nusselt, Re – Reynolds-, Gr – Grashof-, Pr – Prandtl-Zahl).

■ Fazit

Mit den angegebenen Zahlenwerten und Formeln kann man sich klarmachen, welche Temperaturen von elektronischen Bauteilen ausgehen. Der Korrektheit halber sei noch gesagt, dass thermische Vorgänge dynamisch ablaufen und einer *e-Funktion* folgen. Daher können solche Berechnungen eigentlich nicht linear behandelt werden.

Im Bereich von $\vartheta_U = 20\,^{\circ}\text{C}$ bis $60\,^{\circ}\text{C}$ bildet die gezeigte näherungsweise Berechnung jedoch eine gute Grundlage zum Verständnis der Kühlung.

Literatur und URL

- Böge, A. (Hrsg.): Techniker Handbuch: Vieweg Verlag, Wiesbaden 1999 (jetzt: Handbuch Maschinenbau; 19. Aufl., Wiesbaden 2008)
- [2] Lindner:, H.; u. a.: Physik für Ingenieure. Vieweg Verlag, Braunschweig 1968 (neu: 17. Aufl., Hanser Fachbuchverlag; München 2006)
- [3] Winter, F. W.: Technische Wärmelehre. Verlag W. Girardet, Essen 1970
- [4] Stöcker, H.: Taschenbuch der Physik. 5. Aufl., Verlag Harry Deutsch, Frankfurt a. Main 2004
- [5] Alutronic Kühlkörper GmbH und Co. KG: R_{thK}-Online-Rechner. www.alutronic.de → Service → RthK online Rechner

Milli- und Mikroohmmeter-Zusatz für Digitalvoltmeter

Dr.-Ing. KLAUS SANDER

Mit der hier vorgestellten Baugruppe ist es in Verbindung mit einem Digitalmultimeter auf einfache Weise möglich, ohmsche Widerstände im Milli- und Mikroohmbereich zu messen. Neben der Messung kleiner Widerstände lässt sich auch der Übergangswiderstand von Kontakten oder der von Leiterzügen auf einer Platine ermitteln. Zudem ist es möglich, Kurzschlüsse benachbarter Leiterzüge zu lokalisieren.

Die Messung von Widerständen stellt in der Amateurpraxis ein häufiges Problem dar. Für die allgemein üblichen Widerstände ab 1 Ω gibt es eine große Auswahl von Digitalmultimetern und speziellen Widerstandsmessgeräten. Messgeräte für extrem kleine Widerstandswerte sind schon recht selten und im Allgemeinen wesentlich teurer. Mit der hier vorgestellten Zusatzschaltung lassen sich in Verbindung mit einem in jedem Amateurlabor vorhandenen Digitalvoltmeter Widerstände im Milli- und Mikroohmbereich messen.

Mit dieser Veröffentlichung möchten wir zudem an zwei (fast) runde Daten eines Begründers der Elektrizitätslehre erinnern, ohne den die Elektronik kaum denkbar wäre: Georg Simon Ohm [2]. Er wurde am 16. 3. 1789, also vor genau 220 Jahren, ge-

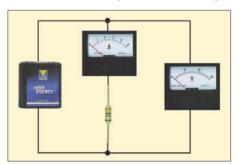


Bild 1: Diese Schaltung misst den Strom absolut korrekt und eignet sich für große Widerstandswerte. Sie wird daher auch als stromrichtige Schaltung bezeichnet.

boren. Gestorben ist er am 6.7.1854. Das war vor 155 Jahren. Ohm erkannte als Erster, dass die Spannung proportional zum Strom ist. Die Proportionalitätskonstante ist der elektrische Widerstand. Ihm zu Ehren wird die Beziehung

$$R = \frac{U}{I}$$

Ohmsches Gesetz [3] genannt und auch die Maßeinheit für den Widerstand trägt seinen Namen. Der historisch interessierte Leser kann die Werke Georg Simon Ohms noch heute im Original lesen [4]. Sie stehen eingescannt als PDF im Internet zum Download bereit. Anbieter dieses kostenlosen Services ist übrigens die Bibliothek

der Georg-Simon-Ohm-Hochschule Nürnberg.

■ Große und kleine Widerstände

Bevor wir zur Vorstellung der Schaltung kommen, sollen einige grundsätzliche Bemerkungen das Messproblem verständlicher machen. Wir messen Widerstände üblicherweise durch die Ermittlung von Strom und Spannung. Über das ohmsche Gesetz können wir dann leicht den Widerstandswert ausrechnen. Unter normalen Umständen funktioniert dieses Verfahren ausreichend genau.

Bei sehr kleinen oder sehr großen Widerständen steigt der Messfehler. Die Ursache ist eindeutig zu ermitteln: Volt- und Amperemeter haben einen Innenwiderstand. Beim Amperemeter sollte dieser

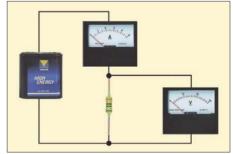


Bild 2: In dieser Schaltung wird die Spannung am Widerstand korrekt gemessen. Sie ist zur Messung kleiner Widerstandswerte notwendig und als spannungsrichtige Schaltung bekannt.

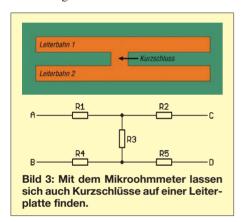
Null sein. Er liegt aber im Bereich von einigen Milliohm bis zu einigen Ohm, je nach Qualität und Messbereich des Messinstruments. Beim Voltmeter sollte der Innenwiderstand dagegen unendlich groß sein. Aber auch hier sind Werte von einigen zehn Kiloohm bis Megaohm typisch. Damit fällt an einem Amperemeter eine Spannung ab und durch ein Voltmeter fließt ein Strom. Deshalb gibt es zur Widerstandsmessung eine strom- und eine spannungsrichtige Messschaltung, die die Bilder 1 und 2 darstellen.

Soll ein besonders großer Widerstand gemessen werden, so muss die stromrichtige Schaltung nach Bild 1 verwendet werden. Das ist auch logisch. Schaltet man in Reihe zu einem großen Widerstand einen sehr kleinen, nämlich den Innenwiderstand des Amperemeters, so ist der zusätzliche Spannungsabfall am Amperemeter vernachlässigbar. Wählt man dagegen die spannungsrichtige Schaltung nach Bild 2 zur Messung großer Widerstände, so fließt durch das Voltmeter ein nicht mehr vernachlässigbarer Strom.

Moderne Voltmeter kompensieren diesen Effekt teilweise durch elektronische Eingangsschaltungen, die den Innenwiderstand auf $10~M\Omega$ und mehr vergrößern können. Allerdings bleibt das Problem, wenn der zu messende Widerstand in der gleichen Größenordnung wie der Innenwiderstand des Voltmeters liegt. Man sollte in diesem Fall immer die Schaltung nach Bild 1 bevorzugen.

Doch bei kleinen und sehr kleinen Widerständen ist diese Schaltung nicht mehr geeignet. Hier fallen am Amperemeter, an den Messleitungen und an Kontakten Spannungen ab, die in der gleichen Größenordnung des Spannungsabfalls am Messwiderstand liegen. Deshalb ist hier der Schaltung nach Bild 2 der Vorzug zu geben. Es wird dadurch wirklich nur der Spannungsabfall am Messwiderstand gemessen.

Es gibt aber noch eine Alternative zu dieser Messschaltung. Eine präzise Stromquelle liefert einen konstanten Strom, der durch den Widerstand fließt. Wir müssen dann nur noch die Spannung messen und können den Widerstandswert genauso berechnen. Bei einem Strom von 10 mA, 100 mA oder 1 A müssen wir noch nicht einmal viel rechnen. Der gemessene Spannungswert ergibt einfach unter Berücksichtigung der Zehnerpotenzen direkt den Widerstandswert. Der am Voltmeter abgelesene Wert entspricht damit exakt dem Wert des unbekannten Rx.


Wird der Strom nun z. B. auf 1 A festgelegt, kann im 1-V-Messbereich (bei Digitalvoltmetern meist 2-V-Messbereich) der Widerstandswert ohne Umrechnung direkt abgelesen werden. Lesen wir am Voltmeter 1,000 V ab, so beträgt Rx exakt 1,000 Ω . Bei einem 3,5-stelligen Digitalvoltmeter ergibt sich eine Auflösung von 1 μ V und somit gleichzeitig 1 $\mu\Omega$.

Eine solche Schaltung haben wir im FA bereits 1994 vorgestellt [1]. Allerdings kann diese Schaltung heute nicht mehr nachgebaut werden. Die verwendeten Schaltkreise werden seit einigen Jahren leider nicht mehr hergestellt. Aber auch heute noch gibt es in der Laborpraxis die Notwendigkeit, sehr kleine Widerstände zu messen. Das beginnt bei der Messung von Kontaktwiderständen und geht bis zur Messung von Widerständen zur Stromüberwachung in Ladegeräten oder Motorschaltungen. Aber

auch der Gleichstromwiderstand von Lautsprecherspulen lässt sich auf diese Weise ermitteln.

■ Fehlersuche

Ein anderes Einsatzgebiet ist die Suche nach Kurzschlüssen zwischen Leiterbahnen. Sollen nur solche Messungen durchgeführt werden, kommt es nicht auf geringe Messfehler an und der Abgleichaufwand reduziert sich. Grundsätzlich kann jede Leiterbahn und jeder Kurzschluss als niederohmiger Widerstand betrachtet werden. Die Äquivalenz des Leiterzugbildes zu einem Widerstandsersatzschaltbild ist in Bild 3 dargestellt. Wird zwischen Punkt A und D der Messstrom eingespeist und eine Klemme des Digitalvoltmeters an eine der beiden

Stromklemmen, z. B. Punkt A, angeschlossen, so kann man mit der anderen Klemme (Prüfspitze) des Digitalvoltmeters auf der Leiterbahn von A nach C entlangfahren. Die Spannung am Voltmeter steigt dann kontinuierlich bis zu einem Maximum an der Stelle des Kurzschlusses an und bleibt dann in Richtung C konstant (hier fließt kein Strom). Wird die bewegliche Prüfspitze von D nach B geführt, so sinkt die Anzeige am Digitalvoltmeter bis auf ein Minimum und bleibt ab der Stelle des Kurzschlusses in Richtung B konstant. Dort wo sich Maximum und Minimum treffen liegt der Kurzschluss, der dann beseitigt werden kann.

Übrigens kann man eine solche Schaltung zur Fehlersuche noch für eine kleine Spielerei nutzen. Wird der Strom nacheinander in die obere oder untere Kante einer Metallplatte eingespeist, so kann durch Messung des Widerstandswertes mit einem Voltmeter (besser einen A/D-Umsetzer an einem Controller) iede Position des Stiftes auf der Platte ermittelt werden. Ähnlich arbeiten manche Tastbildschirme (engl. Touchscreen), die allerdings zur Erhöhung der Genauigkeit das Verhältnis der Position des Stiftes zwischen sich gegenüberliegenden Kanten ermitteln. Metallplatte und Stift sind in diesem Fall metallisierte aber durchsichtige Folien. Einen Tastbildschirm nachzubauen lohnt sich nicht, aber vielleicht können kreative Leser damit ein Spielzeug realisieren, welches dem ähnelt, bei dem eine Drahtöse über ein geformtes Drahtgestell ohne Berührung geführt werden muss.

■ Schaltung

Prinzipiell bilden IC1, IC2 und T1 mit den zugehörigen Widerständen eine präzise Stromquelle. Diese Stromquelle kann je nach Abgriff an der Klemme X1 einen Strom von 1 A, 100 mA oder 10 mA liefern. Um exakt den gewünschten Strom zu erzeugen, ist eine Referenzspannungsquelle notwendig. Wir verwenden dafür den REF192. Dieser liefert am Ausgang 2,5 V mit einer Genauigkeit von 4 ppm. Dabei liegt die Stromaufnahme im Bereich von 50 uA.

Die Referenzspannung wird durch den Spannungsteiler R1, R2 auf 0,1 V reduziert und auf den positiven Eingang des TLC272 (IC2) geführt. Dieser stabilisiert den durch T1 fließenden Messstrom, indem die Spannung am Source-Anschluss von T1 ebenfalls auf 0,1 V geregelt wird. Der TLC272 ist speziell für solche Messaufgaben geeignet, da es sich um einen Präzisionsverstärker handelt. Auch er hat eine extrem geringe Stromaufnahme.


An X2 wird eine Batterie mit 6 bis 9 V angeschlossen. Diese Batterie versorgt die

Messströme und Empfindlichkeit				
Buchse	Mess-	Empfind-		
X1	strom	lichkeit		
	[mA]	$[m\Omega/mV]$		
Pin 3	1000	1		
Pin 2	100	10		
Pin 1	10	100		

beiden Schaltkreise IC1 und IC2. Die Stromaufnahme liegt unter $100~\mu A$. Trotz dieser geringen Stromaufnahme sollte die Batterie abgeschaltet werden können, wenn die Baugruppe längere Zeit nicht genutzt wird. Die Batterie Batt1 liefert den Messstrom von bis zu 1 A, je nach Messbereich. Eine 1,5-V-Mignonzelle reicht trotz des relativ hohen Stroms für eine Vielzahl von Messungen, da dieser Strom nur während der Messung fließt. Für häufige Messungen sollten allerdings Monozellen vorgesehen werden, da sie eine höhere Kapazität haben. Es sind dann mehrere Tausend Messungen möglich.

Der Messstrom wird durch die (auf 0.1 V geteilte) Referenzspannung und den jeweils über die Ausgangsklemmen gewählten Source-Widerstand bestimmt. Diese Widerstände sollten sehr eng toleriert sein. Günstig sind 0,1 % Für den 1-A-Bereich ist R5 zuständig. Er beträgt $0,1~\Omega$. Der Wert der Parallelschaltung von R6, R8 und R10 ergibt 0.9Ω . Dieser Wert ist in Reihe mit R5 geschaltet. Der Gesamtwert von 1Ω legt den zweiten Messbereich von 100 mA fest. Im dritten Messbereich beträgt der Messstrom 10 mA. Er ergibt sich durch die zusätzlich zu R5, R6, R8 und R10 in Reihe liegende Parallelschaltung R7, R9, R11 (9 Ω). Der Gesamtwert beträgt dann exakt 10Ω .

Normalerweise werden für Messzwecke spezielle Präzisionswiderstände verwendet, die es bereits in der Zusammenschaltung $0,1~\Omega/0,9~\Omega/9~\Omega$ gibt. Der Preis dafür liegt bei 20~bis~30~€. Die in der Schaltung angegebene Variante ist wesentlich preiswerter (ein 0,1-%-Widerstand kostet nur etwa 1~€) und erfüllt die Anforderungen genauso gut. Allerdings steigt der Abgleich-

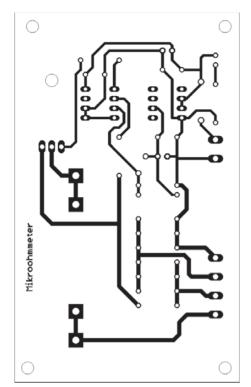


Bild 5: Die einseitige Platine ist nur 59,4 mm $\times\,$ 97,7 mm groß.

aufwand. Er ist aber auch bereits mit Amateurmitteln leicht beherrschbar.

■ Nachbau

Platinenlayout und Bestückungsplan sind den Bildern 5 und 6 zu entnehmen. Durch die geringe Anzahl von Bauelementen ist die Bestückung der Platine in wenigen Minuten erledigt und wir können uns dem Abgleich zuwenden. Die Messwiderstände R6 bis R11 werden erst beim Abgleich bestückt. Ein minimaler Abgleichaufwand ergibt sich, wenn für R1, R2 und R5 bis R11 0,1-%-Widerstände eingesetzt werden. Dabei ergibt sich aber eine Schwierigkeit. Solche Widerstände sind nur im Bereich zwischen 4.99 Ω bis 1 M Ω lieferbar. Durch Parallelschalten wesentlich größerer Widerstände ist aber ein Abgleich möglich. Es ist sinnvoll, die Parallelschaltung dieser Widerstandswerte vor dem Einlöten mit einem Ohmmeter auszuprobieren.

Zuerst ist die Spannung an Pin 3 des Operationsverstärkers IC2 auf 0,1 V (MP1) einzustellen. Es kommt hier nicht auf den exakten Wert auf drei Stellen hinter dem Komma an, da ein Feinabgleich des Messstroms auch über die Source-Widerstände möglich ist.

Zur Messung des Messstroms ist ein Amperemeter mit einem Messbereich von etwas mehr als 1 A erforderlich. Dieses wird zwischen beide Anschlüsse für die Prüfspitzen (X1/Pin 4 und X1/Pin 3) geschaltet.

Die Batterie Batt1 sollte während des Abgleichs durch ein Netzgerät ersetzt werden,

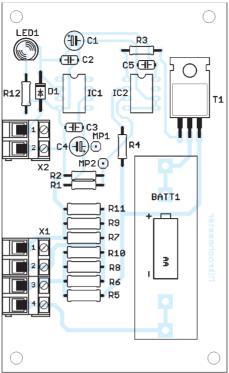


Bild 6: Es werden ausschließlich bedrahtete Bauelemente eingesetzt.

welches mindestens 1,5 A liefern kann, um eine Strombegrenzung durch das Netzgerät selbst zu verhindern.

Zuerst wird der 1-A-Bereich abgeglichen. Ist für R5 ein Stück Widerstandsdraht verwendet worden, können wir dessen Länge so lange verändern, bis wir nahezu (oder besser: exakt) einen Strom von 1 A messen. Haben wir es nicht ganz geschafft, können wir durch versuchsweises Parallelschalten eines Widerstands von etwa 10 k Ω (Wert durch Versuch ermitteln) den Messstrom exakt einstellen.

Als Nächstes folgt der Bereich 100 mA (X1/Pin 2) mit den drei Widerständen R6 bis R8. Analog dazu wird der Abgleich im 10-mA-Messbereich durchgeführt. Übrigens, wenn mit den in der Bastelkiste gefundenen Widerständen kein exakter Abgleich möglich ist, lohnt sich auch ein Versuch aus einer anderen Produktionscharge des gleichen Herstellers. Durch die Toleranzen hat man dann manchmal mehr Glück.

Uns stehen nun drei Messbereiche mit den in der Tabelle aufgeführten Kennwerten zur Verfügung.

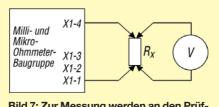


Bild 7: Zur Messung werden an den Prüfling zwei Prüfspitzen angeschlossen.

Nur zur eigentlichen Messung, d. h., zum Ablesen des Voltmeters, ist das Gerät einzuschalten. Eine einzige 9-V-Block-Batterie reicht mehrere Jahre. Allerdings sollte trotzdem, wie bereits erwähnt, ein Schalter vorgesehen werden. Das hat zwei Gründe: Erstens ist die Wahrscheinlichkeit gering, dass die Batterie ausläuft. Und zweitens kann bei einem nicht genutzten Gerät die Batterie Batt1 schnell entladen werden. wenn sich die Messklemmen zufällig berühren. Bei Tastern kann man zwar das Ausschalten nicht vergessen, sie sind allerdings recht unbequem bei der Benutzung, wenn gleichzeitig die Messklemmen in der Hand gehalten werden sollen.

Um den eingeschalteten Zustand zu signalisieren, ist die LED vorgesehen. Der Strom aus der 9-V-Batterie steigt dadurch allerdings auf einige Milliampere. Für eine 9-V-Batterie und eine Low-Current-LED (2-mA-Typen) kann für R1 ein Wert von 1 bis 3,3 k Ω gewählt werden. Auf diese Anzeige kann bei Verwendung eines Einschalttasters verzichtet werden.

Das Gerät ermöglicht eine Messgenauigkeit von 1 %. Voraussetzung ist selbstverständlich, dass wir die Messströme exakt kalibriert haben. Zudem muss das Voltmeter ausreichend genau arbeiten.

■ Messung

Die Messung erfolgt nun so, dass wir zwei Prüfspitzen an die jeweiligen Messbereichsklemmen der Baugruppe anlegen. Diese Prüfspitzen kommen an den zu messenden Widerstand. Parallel dazu schließen wir ein Voltmeter an (Bild 7). Der Widerstandswert kann nun wie oben beschrieben direkt vom Voltmeter abgelesen werden.

Wir können nun versuchsweise die Übergangswiderstände unterschiedlicher Schalter, Relaiskontakte oder auch von Lötstellen und Krokodilklemmen messen. Hier werden sich wichtige Erfahrungen für die künftige Messpraxis ergeben.

Eine Lötstelle kann einen höheren Widerstand aufweisen als eine kräftige Krokodiloder Messklemme. Um also niederohmige Widerstände zu messen, sollten unbedingt kräftige Messklemmen zum Einsatz kommen. info@sander-electronic.de

Literatur

- [1] Sander, K.: Milli- und Mikroohmmeterzusatz für Digitalvoltmeter. FUNKAMATEUR 43 (1994) H. 10, S. 890–891
- [2] Wikipedia: Georg Simon Ohm. http://de.wikipedia.org/wiki/Georg_Simon_Ohm
- [3] Wikipedia: Ohmsches Gesetz: http://de.wikipedia.org/wiki/Ohmsches_Gesetz
- [4] Georg-Simon-Ohm-Hochschule für angewandte Wissenschaften – Fachhochschule Nürnberg: Hochschulbibliothek. www.ohm-hochschule.de/ institutionen/bibliothek/bibsuche/texte_online_ aufrufen/historische_buecher_der_gso_fh/ werke_von_georg_simon_ohm/page.html

GSM-Box — einfache Steuerung mit Mobiltelefontechnik (2)

DIRK BARTHELMES - DL5IN

Nachdem im ersten Teil hauptsächlich die Funktionen der in den Mobilfunknetzen eingesetzten GSM-Module näher erläutert wurden, zeigen wir nun anhand einiger praktischer Beispiele, wie sich diese Technik auch in eigene Projekte integrieren lässt.

Auch im GSM-Bereich lässt sich zu Hause noch etwas basteln, zumindest wenn man nicht den Ehrgeiz hat, gleich ein komplettes Mobiltelefon zu bauen. Die hier verwendete Hardware ist auf einer Leiterplatte von 100 mm × 80 mm aufgebaut und zu einem großen Teil mit SMD-Bauelementen bestückt.

Die GSM-Box hat eine Zulassung als elektronische Unterbaugruppe EUB (E Kennzeichnung), darf also auch in Kraftfahrzeuge eingebaut und während der Fahrt betrieben werden. Die hier verwendete Hardware erhalten Sie als Komplettgerät mit E-Kennzeichnung sowie eine CD-ROM mit Dokumenten bei [3]. Aufgrund zulassungsrechtlicher Vorgaben kann es hier keinen Bausatz mit E-Kennzeichnung geben. Für Leser des FA steht aber ein kleines Kontingent Fertiggeräte zu vergünstigten Konditionen zur Verfügung, da die original für BOS-Kunden entwickelte GSM-Box im Vergleich zu einem Mobiltelefon vom Wühltisch nicht ganz preiswert ist. Dazu bitte das Formular unter [5] nutzen.

Schaltungsbeschreibung

Das Hauptbauteil ist ein integriertes HF-Modul von *Wavecom*, welches den kompletten Funkteil sowie den SIM-Kartenhalter enthält, das Ganze gesteuert durch einen internen ARM-Mikrocontroller. Vereinfacht gesagt muss an dieses Modul lediglich eine Antenne angeschlossen, eine SIM-Karte eingesetzt und das Ganze mit Spannung versorgt werden – schon ist man im GSM online.

Das Modul kann in allen üblichen GSM-Frequenzbereichen arbeiten – es ist also mit Karten aller Netzbetreiber einsetzbar. Die beiden Übertrager sind für die galvanische Trennung der NF-Wege vorgesehen, der V.24-Treiber MAX3232 sorgt für entsprechende Schnittstellenpegel zum direkten Anschluss an einen PC. Relais mit nachfolgender EMV-Schutzbeschaltung und ein Festspannungsregler bilden die Stromversorgung.

Der MC2830 ist ein VOX-Baustein. Er erzeugt aus der NF ein Signal zur Steuerung externer Komponenten, doch dazu später mehr. Alle Signale sind an einem HD26-Verbinder verfügbar, die Stromversorgung

erfolgt über einen Stecker, wie er an Diskettenlaufwerken üblich ist. Das Gerät wird durch Anlegen von Masse an Pin 14 von X1 eingeschaltet – alternativ kann auch die Lötbrücke SJ1 gesetzt werden. Das Modul schaltet sich dann automatisch beim Anlegen der Betriebsspannung an J1 ein.

Bild 4: Neben der PC-Schnittstelle befinden sich vier LEDs, die Auskunft über den Betriebszustand der GSM-Box geben. Foto: DL5IN

Die GSM-Box weist auf der Frontseite vier Leuchtdioden auf - die beiden gelben LEDs zeigen die Eingangsspannung sowie die stabilisierten 5 V der Betriebsspannung an, siehe Bild 4. Zenerdioden sorgen dafür. dass gewisse Mindestspannungen vorhanden sein müssen, bevor sie leuchten. Die rote LED kennzeichnet die einzelnen Betriebszustände. Dauerleuchten bedeutet, dass die Box eingeschaltet ist und ein Funknetz sucht. Bei langsamem Blinken im 3-s-Takt ist sie in das Netz eingebucht. Schnelles Blinken signalisiert den Verbindungszustand. Die vierte LED, die blaue, hängt an einem Ausgang des GSM-Moduls und kann frei verwendet werden.

■ Hinweise zur Inbetriebnahme

Nach dem Entfernen der vier schwarzen Senkkopfschrauben auf der Steckverbinderseite lässt sich die Leiterplatte aus dem Profilgehäuse ziehen. Die Schublade für die SIM-Karte befindet sich seitlich. Durch Druck auf den kleinen quadratischen Auswerfer direkt daneben ist sie entfernbar. Die SIM-Karte hat eine abgeschrägte Ecke, wodurch sie sich nur in einer Richtung einsetzen lässt. Wenn die SIM-Karte bündig in der Schublade liegt, ist die Lade so weit vorsichtig einzuschieben, bis die Schublade komplett im Modul verschwindet.

Zur Kommunikation ist eine serielle Verbindung zu einem PC über ein sechsadriges Kabel erforderlich, dessen Beschaltung Bild 6 zeigt. Die PC-Software kann z. B. das mit dem Betriebssystem Windows mitgelieferte *Hyperterminal* oder auch jedes andere Terminalprogramm sein. Als Schnittstellenparameter bei der Erstinbetriebnahme sollten 115 200 Bit/s, 8 Datenbits, keine Parität und ein Stoppbit verwendet werden.

Stromversorgung

Bedingt durch die Zeitschlitztechnik zieht das HF-Modul neben einem gewissen Grundstrom vor allem in den Sendezeitschlitzen impulsförmig sehr hohe Ströme. Die Spitzenstromaufnahme ist vom Standort abhängig, da die Sendeleistung automatisch so geregelt wird, dass eine gute Verbindung erreichbar ist. Die interne Stabilisierung mindert diesen Effekt etwas, trotzdem muss die Stromversorgung dafür geeignet sein. Empfohlen wird ein 12-V-Netzteil, das mindestens 1 A abgeben kann.

Einstellen der NF-Pegel

Die von der GSM-Box abgegebenen bzw. zu ihr geführten NF-Pegel müssen nur grob angepasst werden. Die Feinabstimmung lässt sich bequem per Software erledigen. Dazu stehen die Kommandos at+vgr und at+vgt zur Verfügung. Näheres entnehmen Sie bitte der Dokumentation des GSM-Moduls selbst [6].

Antennen

Zum Betrieb der GSM-Box ist selbstverständlich auch eine Antenne erforderlich. Im einfachsten Fall ist das eine direkt aufgesteckte Kurzantenne, besser sollte aber eine abgesetzte Antenne verwendet werden. Magnethaftantennen sind hier eine preiswerte Alternative, passende Dualband-Antennen gibt es z.B. für unter 10 € bei [7]. Falls bei schlechten Empfangsverhältnissen eine Dachantenne eingesetzt werden muss, gibt es z. B. über [8] eine Dualband-Antenne für Mastmontage von Kathrein (Artikel-Nr. 738446). Sie sollten nach Möglichkeit immer eine Zweibereichsantenne einsetzen, da die alte Frequenzregel (D1 und D2 = 900 MHz, E+ und $O_2 = 1800$ MHz) nicht mehr in allen Fällen stimmt.

Persönliche Identifikationsnummer

Wenn Sie eine SIM-Karte eingelegt haben, die die Eingabe einer persönlichen Identifikationsnummer (PIN) erfordert, müssen Sie die PIN über die serielle Schnittstelle mit dem Kommando at+cpin=<PIN> an die GSM-Box senden. Für erste Versuche bietet sich der Einsatz einer PIN-losen Prepaid-Karte an. Es gilt das Gleiche wie bei Mobiltelefonen: Es gibt nur drei Fehlversuche, danach benötigen Sie die Ihnen vom

Netzbetreiber zugesandte PIN2 zur Entsperrung.

Wichtige AT-Kommandos

Nach der Einschaltprozedur und gegebenenfalls der erfolgreichen PIN-Eingabe ist die GSM-Box bereit zur Herstellung von Sprach- und Datenverbindungen.

Wenn Sie die GSM-Box anrufen, wird das Signal *Ring* auf der seriellen Schnittstelle (X1, Pin 17) ausgegeben. Das Gespräch bzw. die Datenverbindung können Sie mittels *ata* annehmen. Das Beenden der Verbindungen ist bei Gesprächen mit *ath* bzw. bei Datenverbindungen mit +++ (innerhalb 1 s eingeben) und nachfolgendem *ath* möglich. Wie die automatische Annahme funktioniert, zeigen wir später.

Selbst anrufen können Sie mit *atd*<*Rufnummer*>, für CSD-Datenverbindungen ist einfach ein Semikolon anzuhängen, also *atd*<*Rufnummer*>; eingeben.

Insgesamt gibt es über 100 solcher AT-Kommandos, mit denen alles rund um das Modul und die GSM-Anwendung gesteuert werden kann. Näheres findet sich bei [3] bzw. in abgespeckter Version bei den nachfolgenden Anwendungen. Eine Auswahl zeigt die Tabelle.

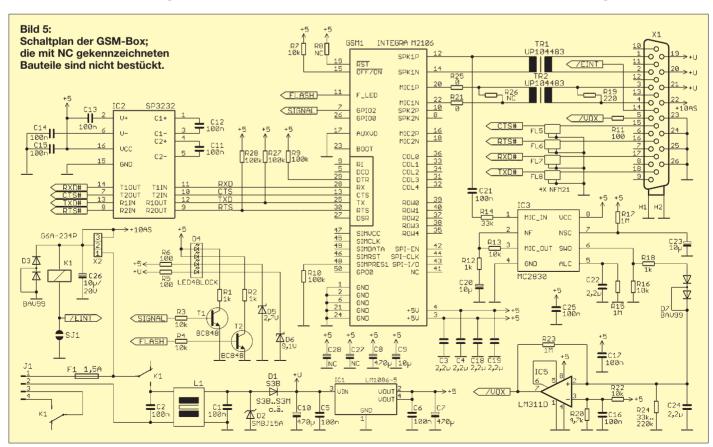
Anwendungen

Ich kann hier lediglich einige Möglichkeiten aufzeigen und keine bis ins letzte Detail beschriebene Bauanleitungen liefern. Alle beschriebenen Anwendungen habe ich

praktisch erprobt. Je nach Rückmeldung der Leser kann das eine oder andere Projekt gegebenenfalls noch vertieft dargestellt werden.

Auch die GSM-Box hat, wie die alten Analog-Modems, einen Parameter SO, der die automatische Rufannahme regelt. Standardmäßig steht der auf O, das heißt, dass eine kommende Verbindung durch externe Steuerung angenommen werden muss (Befehl ata). Wenn Sie SO auf 1 programmieren (Befehl atsO=1), heißt das, dass ein Anruf nach dem ersten Klingeln automatisch angenommen wird.

Fernbesprechung eines Transceivers, Zugang zu Relaisfunkstellen


Wenn es sich dabei um einen Anruf mit dem Dienstmerkmal *Sprache* handelt, wird automatisch eine NF-Verbindung aufgebaut. So können Sie z. B. auf dem angeschlossenen FM-Relais den Funkverbindungen lauschen. Selbstverständlich ist es auch möglich, den heimischen Transceiver anzurufen und diesen aus der Ferne zu besprechen. Ein Problem bei Letzterem ist, dass die GSM-Verbindung vollduplexfähig ist, Ihr Transceiver in der Regel aber nicht. Das heißt, Sie müssen ein Kriterium für die Sendertastung bilden.

In der GSM-Box wird dies durch einen optionalen VOX-Baustein MC2830 realisiert. Dieser wertet die ankommende NF aus. Sobald sie von einem IC-intern gebildeten Mittelwert abweicht, wird der Aus-

gang /VOX aktiv. Die Bauelementewerte sind so gewählt, dass bei flüssiger Sprache eine kontinuierliche Sendertastung ohne großen Nachlauf erfolgt. Wenn Sie die versehentliche Senderauftastung, z. B. durch unerwartete Hintergrundgeräusche, verhindern wollen, können Sie an Ihrem Mobiltelefon das Mikrofon per Menü deaktivieren.

Beachten Sie noch, dass Teilnehmer ohne Amateurfunklizenz den Sendezweig in den Amateurfunkbereich nicht nutzen dürfen. Sie als Betreiber der GSM-Box müssen also selbst dafür Sorge tragen, dass kein Unlizenzierter über die GSM-Verbindung Zugang zum Sender erhält. Zur automatischen (extern realisierten) Authentifizierung steht die Rufnummernübermittlung oder die Eingabe einer separaten PIN zur Wahl.

Falls ein einzelner Zugang nicht ausreicht oder erhöhte Anforderungen an die Erreichbarkeit gestellt werden, lassen sich Zugänge durch mehrfachen Einsatz der GSM-Box auch einfach kaskadieren. Dabei ist trotzdem nur eine Einwahlnummer zu veröffentlichen. Die Aufteilung übernimmt das GSM-Netz von alleine. Dazu muss lediglich eine Rufweiterleitung für den Fall der Nichterreichbarkeit programmiert werden. Dadurch werden Anrufer automatisch immer auf das nächste freie Modul weitergeleitet. Beachten Sie, dass die Rufweiterleitung nicht bei allen Netzbetreibern bzw. Verträgen kostenfrei ist.

Kommando	Bedeutung
at+vgr	Empfangspegel einstellen
at+vgt	Sendepegel einstellen
at+cpin= <pin< td=""><td>> PIN eingeben</td></pin<>	> PIN eingeben
ata	Verbindung annehmen
ath	Sprachverbindung beenden
+++ (1s) ath	Datenverbindung beenden
atd <nr></nr>	Sprachverbindung herstellen
atd <nr>;</nr>	Datenverbindung herstellen
ats0=1	Ruf automatisch annehmen
at+chld	Gruppenkonferenz aufbauen

Im GSM-Modul ist standardmäßig eine Funktion aktiviert, die einen Teil der gesendeten NF wieder auf dem Empfangszweig zurückführt. Dies hat den Sinn, dass der Benutzer nicht den Eindruck hat, in eine tote Leitung zu sprechen.

Wenn Sie das GSM-Modul an einer Relaisstelle einsetzen, die auch besprochen werden soll, muss diese NF-Kopplung deaktiviert werden, da sie sonst die normale Zusammenschaltung zwischen Empfängeraus- und Sendereingang stört. Die Abschaltung erfolgt über das Kommando at+sidet=0.

Absetzen einer V.24-Schnittstelle

Bei einem Anruf mit dem Dienstmerkmal *Daten* wird eine Datenverbindung aufgebaut. Der ganze Vorgang dauert etwa 15 s, ganz wie in den Anfangszeiten des Internets mit den Analog-Modems. Danach kommt die Meldung *Connect* und der Datenkanal wird transparent durchgeschaltet. Sie landen von außen also automatisch auf der seriellen Schnittstelle und können ein daran angeschlossenes Gerät fernsteuern.

Mit dem Kommando at+ipr=9600 lässt sich z. B. die Geschwindigkeit auf der seriellen Schnittstelle auf 9600 Bit/s ändern. Das ist besonders beim Anschluss an ein fernzusteuerndes Gerät wichtig. Nach at&w werden solche Einstellungen in einem nicht flüchtigen Speicher abgelegt.

Versand von Kurznachrichten mit dem PC

Das GSM-Modul unterstützt den Versand von Kurznachrichten (SMS) im so genannten PDU- oder Text-Modus. Für den Anfang sollten Sie besser im Textmodus arbeiten, den Sie mit at+cmgf=1 aktivieren. Mittels at+cmgs=<Rufnummer> wird die Zielrufnummer übergeben. Darauf antwortet das Modul mit einem > und fordert zur Texteingabe auf. Der Text mit maximal 160 Zeichen ist mit einem Ctrl-Z abzuschließen. Als Antwort erhalten Sie eine fortlaufende Nachrichtennummer. Danach ist das Modul wieder für neue Aufgaben bereit.

Die gesamte Textaussendung dauert etwa 7 s – es können also maximal sieben bis

acht Kurznachrichten pro Minute versandt werden. Das Versenden von deutschen Umlauten ist übrigens mit einem Terminalprogramm eine kleine Herausforderung und kann hier nicht in vollem Umfang beschrieben werden. Nur soviel: Grundsätzlich geht es mit dem GSM-Modul.

Gruppenkonferenzen mit mehreren Teilnehmern

Das vom ISDN her bekannte Leistungsmerkmal *Dreierkonferenz* ist auch im GSM nutzbar. Mit dem Kommando *at+chld* und den entsprechenden Parametern lassen sich ganz einfach Konferenzen bilden. Bei D1 habe ich das mit bis zu fünf GSM-und einem Festnetzteilnehmer praktisch erprobt. Der Aufbau einer Konferenz dauert allerdings etwas, da jeder Teilnehmer erst in die Konferenz aufgenommen werden kann, nachdem er den Anruf angenommen hat. Bei fünf Teilnehmern kann das schon einmal 1 min und mehr dauern.

Bild 6: Belegung der V.24-Leitung; links die PC-Seite mit dem weiblichen Sub-D9-Stecker, rechts die Seite zur GSM-Box, dem männlichen HD26-Stecker

Wer die NF von zwei GSM-Boxen über Kreuz verbindet, kann die Teilnehmerzahl auf zwölf erhöhen, ohne dass der Konferenzaufbau länger dauert, da beide Boxen ja voneinander unabhängig Teilnehmer anwählen können.

Beachten Sie, dass bei Prepaid-Karten und bei manchen Vertragskarten (z. B. BASE) die Funktion der Konferenzschaltung in der Regel nicht zur Verfügung steht. Sie können eine SIM-Karte auch vorab testen, sofern Ihr Mobiltelefon die Funktionen *Halten* und *Konferenzgespräch* unterstützt. Alle anderen Teilnehmer der Konferenz können beliebige Telefone benutzen.

Der Ablauf beim Aufbau der Gesprächskonferenz ist folgender:

- Stellen Sie eine Verbindung zum ersten Teilnehmer her.
- Mit der Funktion Halten/Parken (durch Drücken der Tasten 2 und Gespräch annehmen, Taste mit grünem Telefon) oder über das Menü schalten Sie sich aus der

- Verbindung zum gerade angewählten Teilnehmer aus, der nun gehalten wird.
- Wählen Sie nun die nächste Teilnehmerrufnummer
- Nachdem die Verbindung hergestellt wurde, drücken Sie die Tasten 3 und Gespräch annehmen (Taste mit grünem Telefon) – der zweite Teilnehmer ist nun auch Mitglied der Konferenzschaltung.

Diese Schritte wiederholen Sie für jeden weiteren Teilnehmer. Wer schon an der Konferenzschaltung teilnimmt, wird mit einem Tonsignal über jeden Neuzugang informiert. Haben Sie bereits mehrere Teilnehmer auf *Halten* gelegt, können sich diese schon miteinander unterhalten, solange Sie noch weitere Teilnehmer anrufen.

Die prinzipielle Vorgehensweise ist identisch, egal ob Sie Tasten am Mobiltelefon oder AT-Kommandos für die GSM-Box nutzen. Doch Vorsicht, denn auch bei Konferenzen gilt: Anrufer zahlt, d. h., wenn Sie mit einer Flatrate-Karte Teilnehmer zu einer Konferenz zusammenschalten, kostet das nichts zusätzlich (getestet mit D1).

Zugriff auf das Heimnetzwerk

Die Zahl der Geräte mit einer Netzwerkschnittstelle steigt kontinuierlich. Amateurfunk-Tranceiver, Netzwerkkameras, Alarmanlage, Heizungen, Telefonanlagen oder Netzwerk-Switches gibt es schon mit einer browsergestützten Konfigurationsoberfläche. Mit einer CSD-Datenverbindung können Sie unter Zwischenschaltung eines PCs auf Ihr Netzwerk zu Hause zugreifen. Die gesamte Software, die Sie dafür brauchen, ist bei Windows bereits integriert: ein Browser.

Die bei einer CSD-Verbindung genutzte Datenrate erfordert aber Geduld. Reine Text-E-Mails sind zwar innerhalb von wenigen Sekunden versendet, der Aufruf der Startseiten von Google oder eBay dauert aber bereits 10 bzw. etwa 120 s. Die GSM-Box ist bei Zugriffen auf das heimische Netz auf beiden Seiten einsetzbar. Es ist aber auch möglich, ortsfest ein herkömmliches Analog-Modem oder eine ISDN-Karte einzusetzen.

Hier zeigt sich ein Vorteil der GSM-Box gegenüber normalen Mobiltelefonen, die bei Verbindungen in Grenzbereichen der Netzversorgung an ihre Belastungsgrenzen stoßen können. dl5in@darc.de

Literatur und URLs

- [5] db Elektronic GmbH: www.db-elektronik.de/fa/gsmbox.pdf
- [6] Wavecom: AT Commands Interface Guide. www.kern.hu/KERN_HU/DOCBase/Datasheets/ AT_Command_Interface_Guide.pdf
- [7] Reichelt Elektronik GmbH & Co. KG: www.reichelt.de
- [8] KHG-Elektronik: www.khg-elektronik.de

Einfache UHF-Taktoszillatoren für DDS-Synthesizer

THOMAS BAIER - DG8SAQ

Von Analog Devices steht eine ganze Familie von DDS-Synthesizerbausteinen für verschiedene Taktfrequenzen zur Verfügung [1]. Diese sind in der Amateurfunkliteratur weit verbreitet und werden beispielsweise eingesetzt als Überlagerungsoszillatoren in Empfängern [2] und als variable Oszillatoren in Messgeräten wie Netzwerkanalysatoren [3], [4], [5] oder Messsendern [6], [7]. Um ihre Funktion zu erfüllen, benötigen die DDS-Bausteine einen sehr hochfrequenten Systemtakt. Im Folgenden werden sehr einfache Schaltungen und Aufbautechniken vorgestellt, um Taktsignale im UHF-Bereich mit Amateurmitteln spektralrein erzeugen zu können.

Die Tabelle zeigt eine Übersicht über die gängigsten DDS-Typen und deren maximale garantierten Taktfrequenzen, welche weit in den UHF-Bereich reichen. Experimente haben gezeigt, dass die Bausteine sogar teilweise beträchtlich übertaktet werden können. Dies wurde z. B. in [7] ausgenutzt,

richtung, wobei die entstehende Welligkeit mit der doppelten Eingangsfrequenz ausgenutzt wird. Das in Bild 5 dargestellte gemessene Ausgangsspektrum des Frequenzverdopplers belegt, dass ein Nutzsignal von 160 MHz mit 5 dBm Leistung zur Verfügung steht, aber das 80-MHz-Eingangssig-

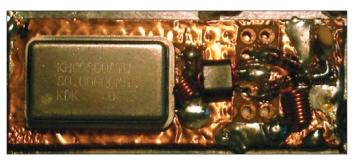


Bild 1: Passiver Frequenzverdoppler von 80 MHz auf 160 MHz

Fotos: DG8SAQ

um den DDS-Ausgangsfrequenzbereich zu erweitern. Allerdings sind für das Übertakten noch höhere Taktfrequenzen erforderlich. (Anm. d. Red.: Bei Einzelexemplaren im privaten Bereich ist Übertakten möglich; bei in Serie aufzubauenden Schaltungen wie z. B. Bausatzprojekten empfiehlt es sich nicht, weil die Parameter der ICs von Charge zu Charge variieren können.)

Als ich meine ersten DDS-Versuche mit einem AD9850 durchführte, ärgerte es mich, dass der DDS-Baustein zwar laut Datenblatt mit 125 MHz getaktet werden konnte, es aber keine billigen TTL-Oszillatoren für Frequenzen über 80 MHz zu kaufen gab. Da beschäftigte ich mich das erste Mal mit Taktfrequenzvervielfachung und Übertaktung.

■ Lösungen

Um den AD9850 mit mehr als 120 MHz Taktfrequenz zu versorgen, war lediglich die Verdopplung der Taktfrequenz eines billigen TTL-Quarzoszillators erforderlich. Die Bilder 1 und 2 zeigen den von mir verwendeten passiven Frequenzverdoppler, welcher noch genügend Ausgangspegel liefert, um den Baustein direkt ohne Treiberstufe anzusteuern. Das Funktionsprinzip beruht auf der simplen Zweiweggleich-

nal lediglich um etwa 10 dB gegenüber dem Nutzsignal unterdrückt ist. Mein AD9850 verrichtete zwar mit diesem Taktsignal klaglos seinen Dienst, allerdings produzierte er einige zusätzliche Störlinien. Daher ist dieses Verfahren nicht empfehlenswert.

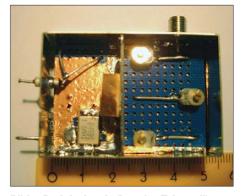
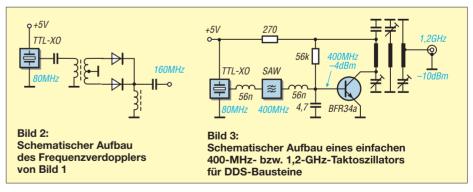



Bild 4: Praktischer Aufbau des Taktoszillators von Bild 3 (Oberseite); links unten erkennt man das SAW-Filter, rechts das dreikreisige Bandfilter für 1.2 GHz.

Der AD9951 ist mit einem internen PLLbasierten Taktfrequenzvervielfacher ausgestattet, welcher eine Eingangstaktfrequenz um den Faktor 4 bis 20 vervielfachen kann. Auf den ersten Blick scheint das Takterzeugungsproblem damit elegant gelöst zu sein. Eine Eingangsfrequenz von 20 MHz kann mit dem Vervielfachungsfaktor 20 leicht intern auf 400 MHz multipliziert werden. Bild 6 zeigt ein mit dieser Takterzeugung aus einem 20-MHz-Quarz generiertes 33-MHz-DDS-Ausgangssignal des AD9951. Da dieser DDS-Typ sehr spektralrein arbeitet, erkennt man deutlich zwei Rauschglocken in ±1 MHz Trägerabstand. Diese werden durch das Seitenbandrauschen des internen VCOs erzeugt. Um diese zu vermeiden, muss man die interne PLL abschalten und ein spektralreines 400-MHz-Taktsignal in den DDS-Baustein einspeisen.

Der Typ AD9858 besitzt überhaupt keine interne Taktvervielfachung, lediglich einen optionalen Teiler durch 2. Hier ist man gezwungen, ein 1-GHz-Taktsignal extern zu erzeugen. Bild 3 zeigt, wie solche hochfrequenten Taktsignale mit minimalem Aufwand generiert werden können. Kernstück

Übersicht über einige verbreitete DDS-Bausteine und ihre Taktfrequenzen				
Тур	garantierte maximale	interner Takt-	gemessene maximale	gemessener minimal
	Taktfrequenz	vervielfacher	Taktfrequenz	notwendiger Taktpegel
AD9850	125 MHz	_	200 MHz	-
AD9851	180 MHz	× 1/× 6	_	-
AD9858	1000 MHz	×1/:2	1400 MHz, × 1	-40 dBm bis 1,4 GHz
AD9912	1000 MHz	$\times 2 \times (2 \dots 33)$	1400 MHz, × 1	-
AD9951	400 MHz	× 4× 20	700 MHz, × 1	-16 dBm@400 MHz, -8 dBm@700 MHz
AD9958	500 MHz	× 4× 20	-	−5 dBm lt. Datenblatt

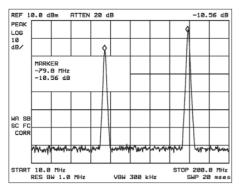


Bild 5: Ausgangsspektrum des Frequenzverdopplers von Bild 1; die Grundwelle ist nur etwa 10 dB unterdrückt.

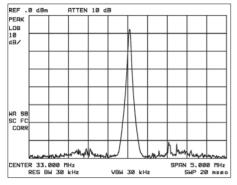


Bild 6: Ausgangsspektrum eines AD9951, welcher mit einem 20-MHz-Quarz und dem internen Taktvervielfachungsfaktor 20 betrieben wird – Rauschglocken links und rechts des 33-MHz-Trägers mit etwa –63 dBc.

ist wieder ein 80-MHz-TTL-Quarzoszillator, welcher aufgrund der Rechtecksignalform Frequenzen bis weit in den UHF-Bereich hinein erzeugt.

Es muss also lediglich die gewünschte Spektrallinie mit einem geeigneten Bandpassfilter herausgesiebt werden. Diese Methode wurde in den bisherigen Versionen des FA-Netzwerktesters [3] in Form der 400-MHz-Option *BX-062* mithilfe eines Dreifach-Helixfilters realisiert. Da sich in meiner Bastelschublade ein 400-MHz-SAW-Filter (*surface acoustic wave filter*) fand, habe ich statt eines Helixfilters dieses verwendet. So arbeitet auf meine Anregung hin auch die in Vorbereitung befindliche neue Version des FA-NWT.

SAW-Filter zeichnen sich durch kleine Abmessungen, hohe Selektion, Abgleichfreiheit und hohe Frequenzstabilität aus. Sie besitzen aber im Vergleich zu Helixfiltern eine etwas höhere Einfügedämpfung, sind in kleinen Mengen schwer zu beschaffen und man muss als Kleinabnehmer mit den Mittenfrequenzen leben, die verfügbar sind. SAW-Filter werden u. a. im kommerziellen Mobilfunk eingesetzt. Die Durchlasskurve meines Filters hat eine 6-dB-Bandbreite von etwa 400 kHz. Die Funktionsweise von SAW-Filtern findet man in [8] ausführlich beschrieben.

Am Ausgang des SAW-Filters in Bild 3 steht nach Leistungsanpassung das in Bild 7 dargestellte nahezu spektralreine 400-MHz-Signal mit etwa –4 dBm Leistung zur Ver-

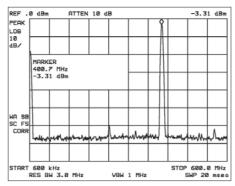


Bild 7: Spektrum des Taktoszillators von Bild 3 an der Ausgangsseite des SAW-Filters bei abgetrennter Transistorstufe

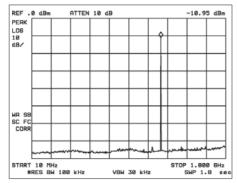


Bild 8: Ausgangsspektrum des 1,2-GHz-Taktoszillators mit einem trotz des einfachen Aufbaus erreichten hohen Nebenwellenabstand

fügung, welches bestens geeignet ist, einen AD9951 direkt anzusteuern. Um einen AD9858 anzusteuern, muss dieses Signal noch in der Frequenz verdreifacht werden. Wie in Bild 3 dargestellt, habe ich dies durch eine Transistorstufe und anschließend in Ermangelung eines SAW-Filters mit passender Mittenfrequenz konventionell mit einem dreikreisigen Bandpassfilter realisiert.

Bild 9: Unterseite des Aufbaus von Bild 4; man erkennt den Quarzoszillator, die Anpassspulen, den Anpasskondensator und den Verdreifachertransistor.

Der mechanische Aufbau ist in den Bildern 4 und 9 dargestellt. Besonders interessant ist hierbei die Aufbautechnik. In Bild 4 erkennt man das SAW-Filter und das dreikreisige 1,2-GHz-Bandpassfilter. Letzteres wurde einem Interdigitalfilter nachempfunden. Die Resonatoren bestehen jeweils aus einem kurzen Stück versilbertem Kupferdraht und einem Folientrimmer möglichst kleiner Kapazität. Der

heiße Anschluss der Trimmer wurde auf der Oberseite mit dem Draht verlötet und mit einem Tropfen Sekundenkleber mechanisch fixiert. Da hier nur Signale einer einzigen Frequenz durchgelassen werden sollen, ist der Wert der Kopplung zwischen den Schwingkreisen unkritisch. Je kleiner die Kopplung, desto schmalbandiger das Filter. Mein Filter habe ich bezüglich der Kopplung nicht optimiert.

Platz fand das Ganze auf einem Stück handelsüblicher Lochrasterkarte. Die Masseund Schirmflächen wurden mittels selbst klebender Kupferfolie realisiert. Sie lässt sich überall leicht aufbringen und mit einem Skalpell nachbearbeiten. Sie hat gute Schirmeigenschaften und ist ausgezeichnet lötbar. Diese Technik stellt im Hochfrequenzbereich eine hervorragende Alternative zur teuren und zeitraubenden Entwicklung und Erstellung einer Leiterplatte dar. Sie ist mechanisch stabil und hat sich bei mir schon bei vielen HF-Projekten bestens bewährt (weiteres Beispiel mit Fotos in [5]).

Die fertige Platine wurde in ein handelsübliches Weißblechgehäuse eingelötet. Bild 8 zeigt schließlich das Ausgangsspektrum des 1,2-GHz-Taktoszillators, welches praktisch keine Nebenwellen mehr aufweist und genügend Pegel zur Ansteuerung eines AD 9858 liefert.

■ Zusammenfassung

Es wurde ein mit Amateurmitteln einfach aufzubauender 1,2-GHz-Taktoszillator und eine sehr einfache, jedoch HF-technisch überaus wirkungsvolle Aufbautechnik mit selbst klebender Kupferfolie und Lochrasterkarte vorgestellt.

Literatur und URLs

- [1] Analog Devices, Inc.: www.analog.com
- [2] Zobel, G., DM2DSN: DDS-VFO für 2-m-Transceiver. FUNKAMATEUR 54 (2005) H. 11, S. 1151–1154; H. 12, S. 1264–1267; 55 (2006) H. 8, S. 915; Platine DDS-VFO:
- www.funkamateur.de → Online-Shop → PLB-03
 [3] Graubner, N., DL1SNG; Borchert, G., DF5FC:
 Bausatz Netzwerktester FA-NWT. FUNKAMATEUR 55 (2006) H. 10, S. 1154–1157, H. 11,
 S. 1278–1282; Bausatz Netzwerktester:
 www.funkamateur.de → Online-Shop → BX-060
- [4] Graubner, N., DL1SNG: Vektorieller Antennenanalysator als Handgerät im Selbstbau. FUNK-AMATEUR 56 (2007) H. 3, S. 283–285; H. 4, S. 396–399; H. 6, S. 506–507; 57 (2008) H. 5, S. 510–513; H. 6, S. 620–622; Bausatz Antennenanalysator:
 - www.funkamateur.de \rightarrow Online-Shop \rightarrow BX-110
- [5] Baier, Th., DG8SAQ: VNWA-Projekt. www.mydarc.de/dg8sag/VNWA/index.shtml
- [6] Kaa, B., DG4RBF: KW-Synthesizer von 1–65 MHz mit DDS. UKW-Berichte 39 (1999) H. 4, S. 205–222
- [7] Kaa, B., DG4RBF: DDS-Signalgenerator für 0,5bis 500 MHz. FUNKAMATEUR 54 (2005) H. 2,S. 148–151; H. 3, S. 246–249
- [8] Baier, Th., DG8AQ: Oberflächenwellen-Filter. CQDL 68 (1997) H. 11, S. 865–867

CTCSS-Decoder und -Encoder zum Nachrüsten

ANDREAS STEFAN - DL5MGD

CTCSS gestattet das Öffnen des Squelchs eines Funkgeräts durch einen Anrufer, wenn es selbst auf den entsprechenden CTCSS-Ton eingestellt ist. Doch ältere Transceiver unterstützen dieses Verfahren von Hause aus nicht, aber mehr und mehr Relaisfunkstellen werden auf CTCSS umgestellt. Durch einen kleinen Zusatz lässt es sich jedoch nachträglich nutzen.

Die CTCSS (engl. Continuous Tone Coded Squelch System) ist ein Subton-Squelch-Verfahren, welches das gezielte Auswählen bestimmter Funkgeräte innerhalb eines eingestellten Kanals erlaubt. Beim Senden wird vom Anrufer ein normalerweise nicht über den Lautsprecher mit abgestrahlter tiefer Ton mitgesendet (Pilotton), auf den nur die auf diesen Ton programmierten Funkgeräte reagieren. Beim Erkennen des Erkennungstons wird dann der Squelch geöffnet, sodass ein Mithören des eingestellten Kanals möglich ist.

Ältere Funkgeräte können oftmals keine CTCSS-Töne de- oder encodieren. Diese Möglichkeit ist aber oftmals erwünscht. Schaltungen für Decodierer gibt es zwar, jedoch sind die dafür benötigten speziellen Schaltkreise nur noch sehr schwer zu erhalten. Oftmals werden deshalb analoge Filter und PLL-Kreise unter erheblichem Aufwand mit Operationsverstärkern aufgebaut. Um dies zu vereinfachen, entstand nachfolgende mikrocontrollergesteuerte Schaltung, die es erlaubt, zwei CTCSS-Töne zu decodieren oder einen sinusförmigen CTCSS-Ton zu erzeugen.

Um aus einem Signalgemisch eine gewünschte Signalkomponente herauszufiltern, gibt es grundsätzlich zwei unterschiedliche Möglichkeiten. Die erste bedient sich einer besonderen Form der diskreten Fourier-Transformation (DFT), dem Goertzel-Algorithmus. Mit diesem Verfahren ist es möglich, einzelne diskrete Spektralanteile eines Signalgemischs zu berechnen und zu bestimmen. Dazu ist das Signalgemisch entsprechend oft abzutasten und zu bewerten.

Damit dies mit einem einfachen Mikrocontroller geschehen kann, ist es notwendig, ein sinusförmiges Signal in ein rechteckförmiges umzuwandeln. Nachteilig wirkt sich dabei aus, dass der Algorithmus außer auf die erwünschte Signalkomponente auch auf alle ungeradzahligen Oberwellen anspricht. Soll also z. B. das Vorhandensein einer Frequenz von 100 Hz kontrolliert werden, würde der Algorithmus auch auf 300 Hz, 500 Hz usw. ansprechen.

Dies ist speziell bei der Ermittlung von CTCSS-Tönen nachteilig, weil z.B. die

dritte Oberwelle des CTCSS-Tons 67,3 Hz mit 207,9 Hz sehr nahe am CTCSS-Ton 206,5 Hz liegt und damit eine Fehlentscheidung leicht möglich ist. Ein weiterer Nachteil liegt in der Auswertezeit. Da einige CTCSS-Töne frequenzmäßig sehr nahe beieinander liegen, sollte die Auswertung auf eine absolute Genauigkeit von 1,4 % ausgelegt sein. Bei z. B. 6000 Signalabtastungen und einer Abtastfrequenz von 8000 Hz könnte ein Signal auf etwa 1,3 Hz genau in rund 750 ms bestimmt werden. Die Auswertezeit beträgt dann insgesamt 1500 ms, weil aus Sicherheitsgründen ein Signal mindestens zweimal für gut befunden werden sollte, damit es zu keinen Fehlentscheidungen kommt.

Bild 1: Ansicht des kombinierten CTCSS-Decoders/-Encoders

Der Goertzel-Algorithmus eignet sich hervorragend zur Auswertung von DTMF-Tönen, weil hier die Oberwellen weit genug vom Nutzsignal entfernt sind und die absolute Genauigkeit der Detektion nicht so hoch sein muss. Weniger geeignet erscheint er für die Analyse von niederfrequenten CTCSS-Tönen mittels einfacher Mikrocontroller [1], [2].

Die zweite Möglichkeit ist ein einfaches Zählen. Ein ebenfalls rechteckförmiges Signal wird hier über einige Perioden gezählt und dann bewertet. Im vorliegenden Konzept werden acht Wellenzüge betrachtet. Liegt das Zählergebnis innerhalb einer Bandbreite, die vom Sollwert weniger als 1,4 % abweicht, so handelt es sich um ein gültiges Signal. Auch hier muss ein Signal mindestens zweimal für gut befunden werden. Die Auswertezeit dauert dann im ungünstigsten Fall, bei der niedrigsten zu detektierenden CTCSS-Frequenz von 67,0 Hz, ungefähr 250 ms – bei einem CTCSS-Ton von 254,1 Hz reduziert sich diese Zeit auf etwa 70 ms.

■ Schaltungsbeschreibung

Die Schaltung ist in mehrere Funktionsblöcke unterteilt: Eingangsverstärker, Tiefpassfilter mit anschließendem Schmitt-Trigger, Ausgangs-D/A-Umsetzer mit Ausgangsverstärker, Stromversorgung sowie der Mikrocontroller mit Peripherie als zentrale Einheit, siehe Bild 2.

Die Schaltung ist auf einer einseitig mit Kupfer beschichteten Platine mit den Abmessungen 53 mm × 73 mm ohne Verwendung von SMD-Bauteilen realisiert worden. Die Bilder 3 und 4 zeigen das Layout und den Bestückungsplan. Die fertig aufgebaute Schaltung ist in Bild 1 zu sehen. Als Gehäuse eignet sich z. B. ein Weißblechgehäuse Nr. 12 von Otto Schubert [3].

Ein Signal, das decodiert werden soll, wird gleichspannungsmäßig entkoppelt dem Einstellwiderstand R8 zugeführt und nach Verstärkung anschließend im Tiefpassfilter um IC3a gefiltert. Sollen nur CTCSS-Töne bewertet werden, haben die Kondensatoren C5, C6 und C7 je 100 nF, sollen auch Töne höherer Frequenz (z.B. 1750-Hz-Rufton für eine Relaisfunkstelle) bewertet werden, dann sind 47 nF ausreichend. Die Einstellung der Haltezeit (Hysterese) an K4 ist experimentell zu ermitteln. Ist K4 offen, ist eine Hysterese aktiv – liegt K4 auf Masse, ist die Hysterese deaktiviert. Die Bedeutung dieser Hysterese ist im Abschnitt zur Funktionsbeschreibung des Decoders er-

Im Schmitt-Trigger um IC3b und dem nachfolgenden Transistor T1 wird aus dem gefilterten NF-Signal ein sauberes Rechtecksignal geformt, das dem Controller zur Auswertung zugeführt wird. Die Schalthysterese des Schmitt-Triggers kann mit R7 und R8 verändert werden. Seine Schaltschwelle $U_{\rm Sch}$ lässt sich aus

$$U_{\rm Sch} = U_{\rm b} \cdot \frac{R_6}{R_6 + R_7}$$

errechnen. Mit den vorgegebenen Werten sind dies bei einer Versorgungsspannung von $U_b = 13.8 \text{ V}$ rund 95 mV.

Die Signalerkennung wird am Steckverbinder K3 an den Pins 3 bis 6 signalisiert.

Für jede Frequenz sind zwei Pins vorgesehen, je ein Pin mit positiver und je einer mit negativer Schaltlogik.

Wird am Steckverbinder K3 der Pin 1 auf Masse gelegt, so geht der Anschluss 6 von K3 auf +5 V und es wird ein Sinussignal in Abhängigkeit der Schalterstellung des Schiebeschalters erzeugt. Das Signal wird einem R/2R-D/A-Umsetzer mit den Widerständen R9 bis R24 zugeführt, mit R25, R29, C10 und C11 gefiltert, verstärkt und gleichspannungsmäßig entkoppelt nach dem Lautstärkepotenziometer R28 an K7 ausgegeben.

■ Funktionsbeschreibung des Decoders/Encoders

Bei einer steigenden Flanke am NF-Eingang des Controllers wird eine Interruptroutine ausgelöst. Im Interrupt werden acht Wellenzüge des Signals bewertet. Dies entspricht bei einem 100-Hz-Signal einer Zeitdauer von 80 ms. Liegt die Frequenz des Messsignals auf 1% in diesem Intervall, wird es als gültig akzeptiert. Eine positive Signalisierung erfolgt jedoch erst, wenn

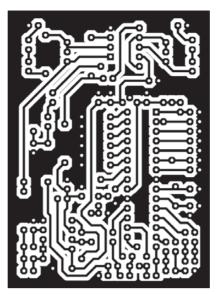


Bild 3: Platinenlayout; 53 mm × 73 mm

die Anforderungen der Hysterese erreicht wurden.

Die Hystereseschwellen lassen sich über den Schiebeschalter in einer Initialisierungsphase einstellen und können Tabelle 2

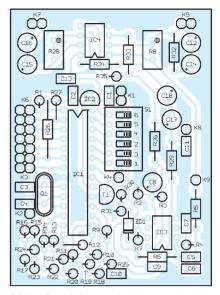
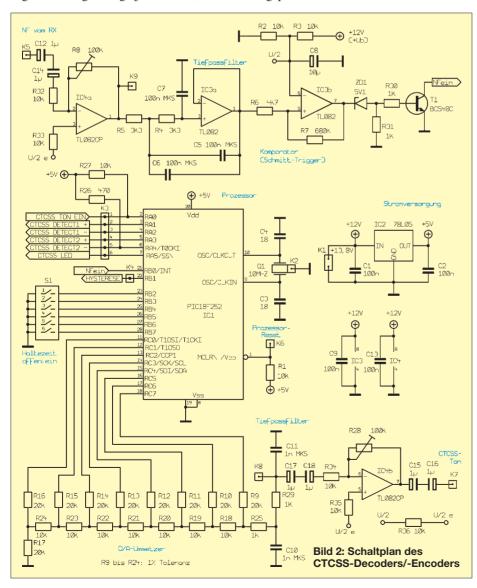



Bild 4: Bestückungsplan

entnommen werden. Der Minimalwert gibt an, wie oft ein Signal mindestens empfangen worden sein muss, damit es als gültig akzeptiert wird. Ist dies der Fall, so wird ein Zähler auf den Maximalwert gestellt. Ein Signal darf nun so oft als ungültig bewertet werden, wie es durch diesen Zähler vorgegeben ist. Wird zwischenzeitlich wieder ein gültiges Signal erkannt, wird der Zähler wieder auf seinen Maximalwert gestellt und der Vorgang beginnt von Neuem.

Durch diese Vorgehensweise ist sichergestellt, dass bei verrauschten Signalen nicht jeder Rauscheinbruch zu einem Abschalten der Signalerkennung führt und nicht jedes Rauschen, das zufällig einem gültigen Ton entspricht, als gültig angenommen wird; die Signalbewertung erfährt also eine Hysterese.

Über den Anschluss K4 (*Hysterese Ein/Aus*) kann die Hysterese ab- und zugeschaltet werden. Dies geschieht dadurch, dass dieser Anschluss auf Masse gelegt wird. Eine Änderung der Hystereseeinstellungen ist nur möglich, wenn der Controller vorher ausgeschaltet wurde. Dazu ist vor einem erneuten Einschalten der Pin 5 von Anschluss K3 auf Masse zu legen, die Betriebsspannung einzuschalten und anschließend dieser Anschluss wieder von der Masse zu trennen. Solange dieser Anschluss auf Masse liegt, wird über K8 ein analoger Spannungswert von 1 V ausgegeben. Die Hysterese laut Tabelle 2 ist nun im internen EEPROM des PIC abgespeichert und steht nach erneutem Einschalten oder einem Stromausfall wieder zur Verfügung. Als Standardwerte nach dem Programmieren sind hier 2 für den unteren und 8 für den oberen Hysteresewert eingestellt, d.h., ein Signal muss mindestens zweimal als gültig und darf maximal achtmal als ungültig bewertet werden.

Tabelle 1: Anschlussbelegungen			
Anschluss	Belegung/Funktion		
K1	Betriebsspannung 13,8 V		
K2	Masseanschluss für Quarzgehäuse		
K3/Pin 1	Tonausgabe Ein/Aus		
K3/Pin 2	Detektor-Ton 1 (positive Logik)		
K3/Pin 3	Detektor-Ton 1 (negative Logik)		
K3/Pin 4	Detektor-Ton 2 (positive Logik)		
K3/Pin 5	Detektor-Ton 2 (negative Logik)		
K3/Pin 6	LED Tonausgabe		
K4	Hysterese Ein/Aus		
K5	NF-Eingang (vom RX)		
K6	Reset des Prozessors		
K7	NF-Ausgang (CTCSS-Ton)		
K8	Messpunkt Ausgang A/D-Umsetzer		
K9	Messpunkt verstärktes NF-Signal		

Der Decoder kann zwei unterschiedliche Frequenzen auswerten. Die erste Frequenz wird über den Schiebeschalter eingestellt. In einer Schleife des Hauptprogramms wird dieser Schiebeschalter ständig abgefragt. Die 64 möglichen Kombinationen von Schalterstellungen entsprechen jeweils einem Ton laut Tabelle 2, wobei 0 einen geschlossenen Schalter (0 V am Controller) und 1 einen offenen Schalter (+5 V am Controller) bedeuten.

Die zweite Frequenz ist im internen EEPROM des Controllers abgelegt, kann jedoch bei seinem Einschalten geändert werden. Dazu sind der Anschluss 1 des Steckverbinders K3 vor dem Einschalten auf Masse zu legen, der Schiebeschalter auf den gewünschten Ton einzustellen, die Betriebsspannung einzuschalten und anschließend der Anschluss 1 vom Steckverbinder K3 zu öffnen. Solange Pin 1 von K3 auf Masse liegt, wird über K8 ein analoger Spannungswert von 5 V ausgegeben.

Nach dieser Vorgehensweise ist der Ton für die zweite zu decodierende Frequenz im EEPROM abgespeichert und steht bei einem Neustart wieder zur Verfügung.

Beim Programmieren des Controllers ist hier als Standardwert 1750 Hz voreingestellt.

Im Encoder-Betrieb wird eine von der Stellung des Schiebeschalters abhängige Fest-

frequenz ausgegeben, die den Tönen laut Tabelle 2 entspricht. Die Tonerzeugung erfolgt mittels eines numerisch kontrollierten Oszillators auf der Basis einer direkten digitalen Synthese mit 8 Bit Auflösung und einem Phasenakkumulator von $N_{\rm Ph}=24$ Bit [4]. Die Assembler-Routine zur Berechnung dauert $N_{\rm Z}=23$ Zyklen. Bei einer vorgegebenen Quarzfrequenz von $f_{\rm q}=10$ MHz dauert ein Zyklus im Controller $4\cdot 10^{-7}$ s = 0,25 · $f_{\rm q}$. Eine implementierte Sinustabelle mit 256 Einträgen wird mit einer Frequenz $f_{\rm A}$ von

$$f_{\rm A} = \frac{0.25 \cdot f_{\rm q}}{N_{\rm Z}} = \frac{0.25 \cdot 10^7 \,\text{Hz}}{23} = 108.7 \,\text{kHz}$$

ausgelesen. In diesem Takt wird jeweils ein 8-Bit-Wert der Sinustabelle in Abhängigkeit des Phasenakkumulators an den D/A-Umsetzer ausgegeben.

Die minimale Frequenzauflösung beträgt mit diesem Verfahren

$$f_{\min} = \frac{0.25 \cdot f_{\rm q}}{N_{\rm Z} \cdot 2^{N_{\rm Ph}}} = \frac{0.25 \cdot 10^7 \text{ Hz}}{23 \cdot 2^{24}} = 6.5 \text{ mHz}.$$

Jeder gewünschte CTCSS-Ton ist daher mit mehr als ausreichender Genauigkeit darzustellen.

Bild 5 zeigt eine Oszilloskop-Aufnahme eines CTCSS-Tons mit einer Frequenz von 100,0 Hz. Die Software für den Decoder/Encoder ist in Assembler geschrieben und liegt sowohl als Hex- als auch als Assembler-File vor und kann mit einem Programmiergerät in den PIC geladen werden.

Betrieb

Nach dem Anlegen der Versorgungsspannung sind z. B. vom Diskriminatorausgang des Empfängers ein ausreichender NF-Signalpegel einzuspeisen und der gewünschte CTCSS-Ton am Schiebeschalter einzustellen. Am Pin 21 des Controllers muss ein rechteckförmiges Signal mit 5 V Amplitude mit einem Oszilloskop feststellbar sein. Ist

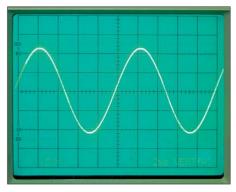


Bild 5: Darstellung des erzeugten CTCSS-Tons auf einem Oszilloskop Fotos: DL5MGD

dies nicht der Fall, ist der NF-Pegel anzupassen.

Wird nun ein CTCSS-Ton gesendet, muss an diesem Pin ein Rechteck mit der Frequenz des CTCSS-Tons zu sehen sein. Ist der Schiebeschalter bzw. die zweite Decodierstelle auf diesen Ton eingestellt, ändert sich der Pegel an den Ausgangspins am Stecker K3. Die Pins mit positiver Logik schalten von 0 V nach +5 V, die mit negativer Logik von +5 V nach 0 V.

Wird an K3 der Anschluss 1 auf Masse gezogen, beginnt die Ausgabe eines CTCSS-Tons. Zugleich geht der Pin 6 von K3 auf +5 V. Um Spannungssprünge beim Einoder Ausschalten der Tonerzeugung zu vermeiden, liegt der Gleichspannungspegel am D/A-Umsetzer im ruhenden Zustand immer auf +2,5 V.

andreas.stefan@web.de

Literatur und Bezugsquellen

- [1] Datallo, S.: DTMF Decoding with a 1-bit A/D converter.
- www.dattalo.com/technical/theory/dtmf.html
- [2] Constantinescu, R.: DTMF Remote control A software DTMF decoder for PIC 16F87X. www.geocities.com/constantinescuradu/content/ dtmf.htm
- [3] Otto Schubert GmbH, Gewerbestr. 8, 90574 Roßtal, Tel. (0 91 27) 16 86, Fax 6923; www.schubert-gehaeuse.de
- [4] Prinz, R., OE1RIB: A PIC based DDS module. www.min.at/prinz/oe1rib/DDS/SineDDS.htm

Tabelle 2	2: Tona	uswah	1												
S1	f	Hys	terese	S1	f	Hys	terese	S1	f	Hys	terese	S1	f	Hys	terese
654321	[Hz]	Min.	Max.	654321	[Hz]	Min.	Max.	654321	[Hz]	Min.	Max.	654321	[Hz]	Min.	Max.
000000	67,0	1	2	010000	114,8	1	80	100000	177,3	2	45	110000	250,3	4	20
000001	69,3	1	4	010001	118,8	1	90	100001	179,9	2	50	110001	254,1	4	25
000010	71,9	1	6	010010	123,0	1	100	100010	183,5	2	55	110010	1000	4	30
000011	74,4	1	8	010011	127,3	1	120	100011	186,2	2	60	110011	1250	4	35
000100	77,0	1	12	010100	131,8	1	160	100100	189,9	2	70	110100	1500	4	40
000101	79,7	1	16	010101	136,5	2	2	100101	192,8	2	80	110101	1750	4	45
000110	82,5	1	20	010110	141,3	2	4	100110	196,6	2	90	110110	2000	4	50
000111	85,4	1	25	010111	146,2	2	6	100111	199,5	2	100	110111	2250	4	55
001000	88,5	1	30	011000	151,4	2	8	101000	203,5	2	120	111000	2500	4	60
001001	91,5	1	35	011001	156,7	2	12	101001	206,5	2	160	111001	2750	4	70
001010	94,8	1	40	011010	159,8	2	16	101010	210,7	2	200	111010	3000	4	80
001011	97,4	1	45	011011	162,2	2	20	101011	218,1	4	4	111011	3250	4	90
001100	100,0	1	50	011100	165,5	2	25	101100	225,7	4	6	111100	3500	4	100
001101	103,5	1	55	011101	167,9	2	30	101101	229,1	4	8	111101	3750	4	120
001110	107,2	1	60	011110	171,3	2	35	101110	233,6	4	12	111110	4000	4	160
001111	110,9	1	70	011111	173,8	2	40	101111	241,8	4	16	111111	4250	4	200

FUNKAMATEUR - Bauelementeinformation

Silizium-HF-Leistungstransistor in Epitaxie-Planar-Technologie

KT925

Grenzwerte

Parameter	Kurzzeichen	min.	max.	Einheit
Kollektor-Basis-Spannung 1)	U_{CB0}		36	V
Kollektor-Emitter-Spannung	1)			
bei $R_{\rm BE} \le 100 \ \Omega$	U_{CER}		36	V
Kollektor-Emitter-Spannung	$U_{ m CE0}$		18	V
Emitter-Basis-Spannung				
bei KT925A, KT925Б	$U_{ m EB0}$		4	V
bei KT925B, KT925Γ	$U_{ m EB0}$		3,5	V
Kollektorstrom (-spitzenstron	n) ^{1) 2)}			
bei KT925A	$I_{\rm C} \left(I_{\rm CM} \right)$		0,6 (1,0)	A
bei KT925Б	$I_{\rm C} \left(I_{\rm CM} \right)$		1,0 (3,0)	A
bei KT925B/Γ	$I_{\rm C} \left(I_{\rm CM} \right)$		3,3 (8,5)	A
Gesamtverlustleistung 3) bei d	$\theta_{\rm B} = 40 ^{\circ}{\rm C}$			
bei KT925A	P_{tot}		5,5	W
bei KT925Б	P_{tot}		11	W
bei KT925B/Γ	P_{tot}		25	W
Sperrschichttemperatur	$artheta_{ m j}$	-45	155	°C

 $^{^{1)}}$ bei ϑ_{B}

Thermische Kennwerte

Parameter	Kurzzeichen min.	typ.	max.	Einheit
Gehäusetemperatur	ϑ _C –45		85	°C
Wärmewiderstand				
KT925A	$R_{ m thic}$		20	K/W
КТ925Б	$R_{ m thic}$		10	K/W
КТ925В/Г	$R_{ m thic}$		4,4	K/W

Dynamische Kennwerte

Parameter	Kurzzeic	hen min.	typ.	max.	Einheit
Transitfrequenz ($f = 100 \text{ MHz}$	$z, U_{CE} = 10 \text{ V}$	<i>V</i>)			
$KT925A (I_C = 0.6 A)$	$f_{ m T}$	500		1200	MHz
КТ925Б ($I_{\rm C} = 0.8 \mathrm{A}$)	$f_{ m T}$	500		1100	MHz
KT925B/Γ (I_C = 1,0 A)	$f_{ m T}$	450		600	MHz
Leistungsverstärkung KT925	A 1)				
$f = 200 \text{ MHz}, P_{\rm E} = 0.1 \text{ W}$	$V_{ m PE}$			11	dB
$f = 400 \text{ MHz}, P_{\rm E} = 0.2 \text{ W}$	$V_{ m PE}$			7,4	dB
Leistungsverstärkung KT925	Б 1)				
$f = 200 \text{ MHz}, P_{\rm E} = 0.5 \text{ W}$	$V_{ m PE}$			8,7	dB
$f = 400 \text{ MHz}, P_{\rm E} = 1.0 \text{ W}$	V_{PE}			5,0	dB
Leistungsverstärkung KT925					
$f = 200 \text{ MHz}, P_{\rm E} = 3.0 \text{ W}$	$V_{ m PE}$			7,7	dB
$f = 400 \text{ MHz}, P_{\rm E} = 5.0 \text{ W}$	$V_{ m PE}$			4,0	dB
Ausgangsleistung ($f = 300 \text{ M}$	Hz)				
$KT925A (P_E = 0.32 W)$	$P_{ m A}$	2,0	2,2		W
KТ925Б ($P_{\rm E} = 1.0 \text{ W}$)	$P_{ m A}$	5,0	3,5		W
KT925B ($P_E = 6.7 \text{ W}$)	$P_{ m A}$	20	21		W
KT925Γ ($P_E = 5.0 \text{ W}$)	$P_{ m A}$	15	16		W
Rückwirkungszeitkonstante ($U_{\rm CB} = 10 \text{ V}$				
$KT925A (I_E = 30 \text{ mA})$	h_{sa}/ω		10	20	ps
KТ925Б ($I_E = 30 \text{ mA}$)	h_{sa}/ω		23	35	ps
KT925B/Γ (I_E = 100 mA)	h_{sa}/ω		11	40	ps
Kollektor-Basis-Kapazität (f	= 5 MHz, $U_{\rm C}$	$_{\rm CB} = 12,6 \text{ V}$			
KT925A	C_{CB0}		10	20	pF
КТ925Б	C_{CB0}		19	30	pF
КТ925В/Γ	C_{CB0}		40	75	pF

¹⁾ C-Betrieb bei $U_{\text{CE}} = 12.6 \text{ V}, \vartheta = 65 \,^{\circ}\text{C}$

Kurzcharakteristik

- HF-Leistungstransistor im Metall/Keramik-Stripline-Gehäuse
- Treiber- und Endstufentransistor in FM-Sendern im Frequenzbereich von 100 bis 400 MHz bei 12 V Betriebsspannung; Einsatz in Amateur-2-m-Linearverstärkern bedingt möglich
- Transistoren sind nicht fehlanpassgeschützt!
- Alle Transistorelektroden sind vom Gehäuse isoliert.

Anschlusskapazität gegen Gehäuse

Anschluss	Kurzzeichen	typ.	Einheit
Emitter	C_{EG}	1,8	pF
Kollektor	$C_{ m KG}$	1,5	pF
Basis	C_{BG}	0,95	pF

Anschlussinduktivität

Anschluss	Kurzzeichen	typ.	Einheit
Emitter	$L_{ m E}$	1,0	nΗ
Kollektor	$L_{ m K}$	2,4	nΗ
Basis	$L_{ m B}$	2,4	nΗ

Maßbild

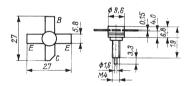


Bild 1: Maßbild und Anschlussbelegung

Einbauhinweise

- Anschlüsse bis auf 4 mm kürzbar
- Das Kürzen muss ohne Krafteinwirkung auf die Gehäuseeinführung der Anschlussfahnen erfolgen.
- Lötstellenabstand zum Gehäuse ≥ 3 mm (Wärme möglichst abführen)
- Lötzeit ≤ 6 s bei 270 °C

Bezug

Literatur

- [1] Halbleiterdatenbuch Transistoren Teil 4, S. 183 ff., Berlin 1987
- [2] Transistoren, Part 4, S. 75 f, Elorg, Moscow

²⁾ $t_p = 20 \text{ ms}; T/p = 50$

³⁾ dynamisch

Wichtige Diagramme

Statische Kennwerte 1)

Parameter	Kurzzeichen min.	typ.	max.	Einheit
Kollektor-Emitter-Reststrom	$(U_{\rm CE} = 36 \text{ V}, R_{\rm BE} \le 100 \text{ s})$	Ω)		
KT925A	I_{CER}	0,1	$7(14)^{2)}$	mA
КТ925Б	I_{CER}	0,2	12 (24) ²⁾	mA
КТ925В/Г	I_{CER}	0,5	30 (60) 2)	mA
Emitter-Basis-Reststrom				
$KT925A (U_{EB} = 4 V)$	$I_{ m EB0}$	0,1	4 (8) 2)	mA
KТ925Б ($U_{EB} = 4 \text{ V}$)	$I_{ m EB0}$	0,3	8 (16) 2)	mA
KT925B/Γ (U_{EB} = 3,5 V)	$I_{ m EB0}$	1,0	10 (20) ²⁾	mA
Gleichstromverstärkung ($U_{\rm Cl}$	E = 5 V			
KT925A ($I_C = 0.2 \text{ A}$)	B	20		
КТ925Б ($I_C = 0,4$ A)	B	25		
KT925B/Γ (I_C = 1,0 A)	B	45		

¹⁾ bei $\vartheta_{\rm B}$ = 25 °C ±10 K, sofern nicht anders angegeben

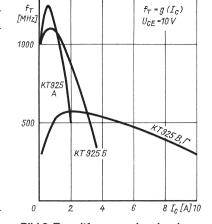


Bild 2: Transitfrequenz der einzelnen Typen des KT925 als Funktion des Kollektorstroms bei $U_{\rm CE}$ = 10 V und f = 100 MHz

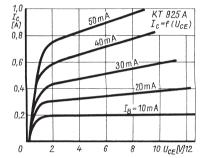
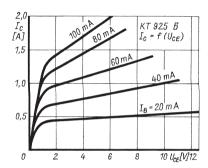



Bild 3: Ausgangskennlinienfeld des Transistors KT925A

²⁾ bei $\vartheta_{\rm B} = 85\,^{\circ}{\rm C}$

Bild 4: Ausgangskennlinienfeld des Transistors KT9255

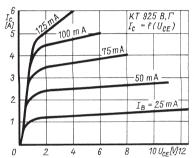


Bild 5: Ausgangskennlinienfeld des Transistors KT925B/Γ

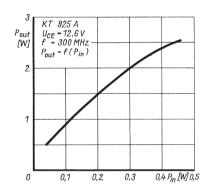


Bild 6: Ausgangsleistung als Funktion der Eingangsleistung beim KT925A

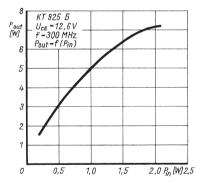


Bild 7: Ausgangsleistung als Funktion der Eingangsleistung beim KT9255

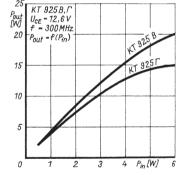
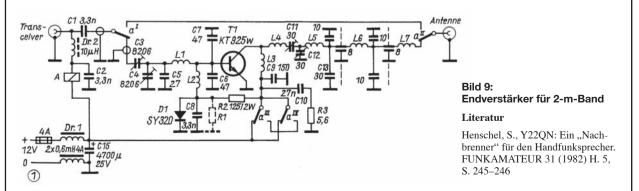



Bild 8: Ausgangsleistung als Funktion der Eingangsleistung beim KT925B/Γ

Applikationsschaltung

DJ-175E VHF-FM-Handv

Sender

	High	Mid	Low	
Sendeleistung	5,0 W	2,0 W	0,8 W	
Stromaufnahme	1,6 A	k.A.	k.A.	
Modulationsverfahren	variable Re	aktanz		
FM-Hub	±5 kHz/±2,5	5 kHz**		
Nebenwellen	≤ 60 dBc			
Mikrofonimpedanz	2 kΩ			

Empfänger

Prinzip	Doppelsuperhet
1. ZF	21,7 MHz
2. ZF	450 kHz
Empfangsfrequenzbereich	
DJ-175E	144,000145,995 MHz
DJ-175T	144,000147,995 MHz
Empfindlichkeit*	0,2 μV (–14 dBμV)
Selektivität (12/26 kHz)	-6/-60 dB
Selektivität (6/14 kHz)**	-6/-60 dB
NF-Leistung (an 8 Ω , k = 10 %)	400 mW
NF-Leistung	max. 500 mW
* E	

^{*} Empfindlichkeit für 12 dB SINAD, ** bei NFM-Modellen

Allgemeines

VHF-FM-Handfunkgerät

Hersteller: Alinco Inc., Japan

Markteinführung: 12/2008 Preis: 159 €

(Straßenpreis 1/2009)

TX-Bereich: 144,0 ... 146,0 MHz RX-Rereich: 144,0 ... 146,0 MHz

TX-Betriebsart: RX-Betriebsart:

Antennenanschluss: 50 Ω (SMA)

NiMH-Akkumulator Stromversorgung:

EBP-72 (7,2 V/0,7 Ah) oder

Li-Ion-Akkumulator EBP-71 (7,4 V/1,2 Ah

Stromaufnahme:

Senden (5 W) 1.6 A

Empfang

(0,5 W NF-Leistung) 250 mA (Stand-by) 70 mA 30 mA

(BS ein) Frequenzstabilität: ±2,5 ppm (-10...45 °C)

Betriebstemperatur: -10 ... 60 °C

58 x 107 x 36,5 mm³ Maße (B x H x T):

(ohne Knöpfe und

Antenne)

Masse: 245 g (mit EBP-72)

Optionales Zubehör

EBP-71 Li-Ionen-Akku (7,4 V/1200 mAh) EME-6 Ohrhörer EME-12 Headset mit VOX

Ohrhörer und Mikrofon mit VOX **EME-13**

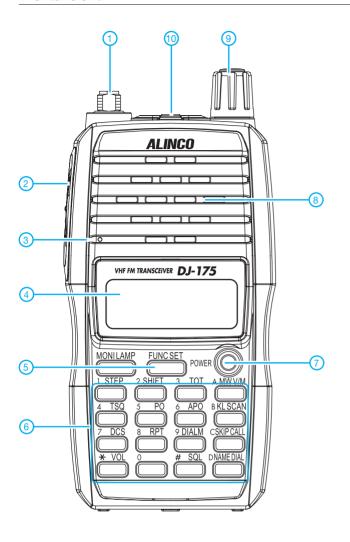
EME-15 Krawattennadelmikrofon

mit VOX

EMS-47 Lautsprechermikrofon mit Lautstärkesteller EMS-59 Lautsprechermikrofon

Besonderheiten (Auswahl)

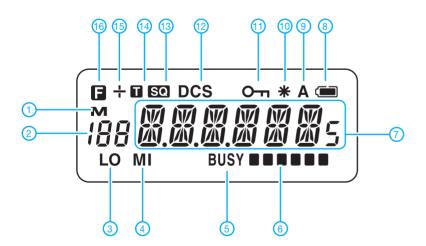
- preiswertes Einsteiger-Monoband-VHF-FM-Handfunkgerät
- robustes Gehäuse
- SMA-Antennenbuchse
- NiMH-Akku mit 700 mAh Kapazität
- Anzeige des Ladezustandes des Akkus
- keine Buchse für externe Stromversorgung
- Senden in wahlweise drei Leistungsstufen
- Set-Modus mit unterschiedlichen Menüs • 1750-Hz-Tonruf (umschaltbar auf 1000,
- 1450 oder 2100 Hz)
- Repeater-Ablage zwischen 0 und ±99,995 MHz einstellhar
- CTCSS/-Coder/Decoder für 39 Frequenzen eingebaut
- DTS-Coder/Decoder für 104 Codes einge-
- DTMF-Tastatur und eingebauter Coder mit 9 Speichern und automatischer Wahlwiederholung
- 200 normale Speicher, 1 Speicher für den Anrufkanal, 1 Repeater-Access-Speicher
- direkte Frequenzeingabe über die Tastatur
- alphanumerische Bezeichnung der Kanäle in lateinischen und kyrillischen Buchstaben
- verschiedene Suchlaufvarianten
- Skip-Funktion
- Abstimmschritte 5/10/12,5/15/20/25/30 kHz
- APO-Funktion (30 min.)
- TOT-Funktion (max. 450 s)
- Batteriesparfunktion f
 ür Empfang
- BLCO-Funktion
- abschaltbarer Quittungston
- Buchse für externes Audiozubehör (Mikrofon, Lautsprecher usw.)
- 1k2-Packet-Radio-Betrieb möglich
- CPU-Takt umschaltbar
- Akku-Typ im Set-Modus wählbar
- Anti-Memory-Effekts-Funktion
- Möglichkeit zum Klonen der Einstellungen auf andere Funkgeräte desselben Typs
- PC-programmierbar
- Programmiersoftware steht auf www.alinco.com zum kostenlosen Herunterladen zur Verfügung



Lieferumfang

Transceiver, Antenne, Trageschlaufe, Gürtelclip, Steckernetzgerät EDC-147 für 230-V-Netz mit Tischlader, NiMH-Akkupack EBP-72 (7,2 V/700 mAh), Bedienungsanleitung, Garantiekarte

Importeur/Großhändler


Maas-Funkelektronik Inh. Peter Maas Heppendorfer Straße 23 50189 Elsdorf-Berrendorf www.alinco-funktechnik.de

- 1 SMA-Antennenbuchse
- 2 PTT-Taste
- 3 Mikrofonöffnung
- DisplayFUNC-Taste zur Aktivierung der Zweitfunktionen

- 6 Tastenfeld 7 Ein/Aus-Taste 8 Lautsprecheröffnungen
- 9 Abstimmknopf
 10 2 Buchsen mit ø 3,5 und ø 2,5 mm für externes Audiozubehör

Display

- Symbol für Speicherbetrieb
- 2 Speichernummer3 Sendeleistungsstufe Low
- 4 Sendeleistungsstufe Middle
- 5 Busy-Anzeige
 6 Balken-S-Meter und Sendeleistungsanzeige
 7 Frequenzanzeige
 8 Ladezustand des Akkus

- 9 APO aktiv
- 10 Repeater-Funktion
- 11 Verriegelungsfunktion 12 - DCS eingeschaltet
- 13 CTCSS aktiv 14 CTCSS-Encoder aktiv
- 15 Richtung der Repeater-Ablage16 FUNC-Taste aktiviert

Hochfrequenzleistungsmesser für 100 kHz bis 3,3 GHz (1)

GÜNTER ZOBEL - DM2DSN

Neben dem digitalen Handmultimeter gehört ein Hochfrequenzleistungsmesser zu den wichtigsten Messgeräten, die der selbst bauende Funkamateur braucht, um seine Vorhaben realisieren zu können. An dem hier beschriebenen Gerät, das konsequent auf Akkumulator- bzw. Batteriebetrieb ausgelegt ist, lassen sich nicht nur Leistung, sondern auch Dämpfung, Verstärkung und Hochfrequenzspannung auf einem Display numerisch ablesen. Darüber hinaus gibt das Gerät eine analoge Spannung aus, die dem aktuellen Eingangssignal streng dB-linear folgt und das Sichtgerät eines Wobbelmessplatzes anzusteuern vermag.

Zahlreiche Bauanleitungen für hochfrequente Leistungsmesser sind in den einschlägigen Amateurfunkzeitschriften zu finden. Thermische Leistungsmesser haben den Vorteil, dass zu ihrer Kalibrierung lediglich ein genauer Spannungsmesser für Gleichspannung oder Netzfrequenz erforderlich ist und ihr Frequenzbereich bei korrektem Nachbau bis zu etlichen Gigahertz reicht. Allerdings ist ihre Anzeige recht träge und für Abgleicharbeiten nur bedingt geeignet. Eine Verwendung im Wobbelbetrieb ist überhaupt nicht möglich.

axiale Detektoren mit Low-Barrier-Schottky-Dioden. Diese Messköpfe liefern eine Richtspannung, die nur bei niedrigen Pegeln proportional zur Leistung ist. Bei höheren Pegeln ist ihre Ausgangsspannung eher linear zur Eingangsspannung. Deshalb ist es die Aufgabe des Leistungsmessers, diese Kennlinie zu entzerren, was mit einem Mikrorechner kein Problem ist [5].

Der hier vorgestellte Leistungsmesser enthält einen Mikrorechner ATMEGA32, mit dem drei verschiedene Detektorkennlinien abgespeichert werden können.

Bild 1: Leistungsmesser mit Messkopf SMA 100 kHz bis 3,3 GHz Fotos: DM2DSN

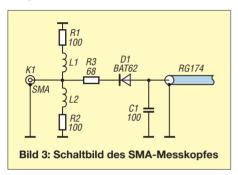
Von Analog Devices kommen zahlreiche integrierte Schaltungen, die einen logarithmischen Verstärker enthalten, der über einen großen Frequenzbereich die erforderliche Dezibel-lineare Ausgangsspannung liefert. In [1] und [2] sind Leistungsmesser vorgestellt, die mit solchen Schaltkreisen arbeiten. Die gelieferte Spannung folgt dem Eingangssignal sehr schnell, so dass auch eine Verwendung im Y-Kanal eines Wobblers sehr gut möglich ist.

Wer sich mit Mikrowellen-Amateurfunk beschäftigt oder das zumindest für die Zukunft nicht ausschließt, sollte eine Lösung anstreben, die den gesamten Frequenzbereich von 100 kHz bis mindestens 18 GHz abdeckt. Zurzeit eignen sich dafür nur koDer in Bild 1 gezeigte Detektorkopf ist bis 3,3 GHz verwendbar und leicht selbst herzustellen. Wer in die höheren Bereiche der Mikrowellentechnik vordringt, wird sich einen kommerziellen Detektor zulegen, wie z.B. den hp33330B, der Eingangsfrequenzen bis 18 GHz zulässt [3] und mitunter bei eBay zu ersteigern ist. Dieser ist an den Leistungsmesser ebenso anschließbar wie der HF-Detektor GR-50 (0...5 GHz) von WiMo.

Der Leistungsmessbereich reicht von -50 dBm (10 nW) bis zu +20 dBm (200 mW), das ist ein Umfang von 70 dB! Am unteren Messbereichsende liefert der Messkopf lediglich eine Richtspannung von etwa 5 μ V. Dies stellt große Anforderungen an den

Tabelle 1: Technische I Leistungsmessers mit S	
Leistungsmessbereich:	-50 bis +20 dBm
e	(10 nW200 mW)
Frequenzbereich:	0,1 bis 3300 MHz
Eingangsimpedanz:	50 Ω
Anzahl der speicherbaren	
Detektorkennlinien:	3
Anzahl der Kalibrier-	
punkte/Kennlinie:	54
Polarität der Messkopf-	
spannung:	negativ oder positiv
Anzeigeauflösung:	0,1 dBm
frequenzabhängiger Fehler	
für Absolutmessungen:	±0,4 dB
temperaturabhängige	
Fehler:	0,03 dB/K
Stromversorgung:	Batterie oder Akku-
	mulator, 2 bis 5 V
Anzeigevarianten:	dBm,
	$W(nW, \mu W, mW),$
	$V(\mu V, mV, V),$
	dBμV, Bargraph
Wiederholrate:	2 Messungen/s
Betriebsarten:	Absolut-, Relativ-
	und Offsetmessung,
	Wobbelbetrieb
automatische Abschaltung:	5, 10 oder 20 min
	nach letzter Bedien-
	handlung oder keine
	autom. Abschaltung
Unterspannungsabschaltung	
	2 und 4 V in
	0,1-V-Stufen
analoge Ausgangsspannung	
	0,05 V/dB
Auflösung:	1,2 mV
Umsetzzeit pro Messpunkt:	
Stromaufnahme:	40100 mA bei
	2,5 V Batteriesp.

Gleichspannungsverstärker, der das Signal in den Arbeitsbereich des Analog-Digital-Umsetzers (ADU) anhebt. Am kritischsten sind Brummschleifen und 50-Hz-Einstreuungen aus dem Stromnetz. Das legt Batteriebetrieb nahe.


Bild 2: Eigenbau-Messkopf SMA (oben) und kommerziell hergestellter Messkopf hp33330B

Aber auch andere Gründe sprechen für Batteriebetrieb: Schnell ist das Gerät, das nicht größer als ein digitales Handmultimeter ist, auf den Arbeitsplatz geholt. Ohne eine noch freie Steckdose zu finden (die es meist nicht gibt...), kann sofort mit der Messung begonnen werden.

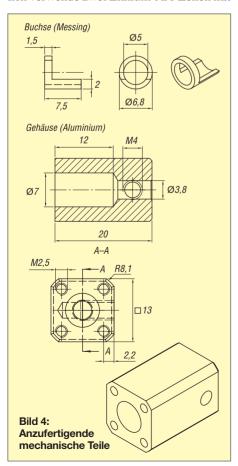

Aber jeder kennt auch das: Braucht man ein solch batterie- oder akkumulatorbetriebenes Gerät, ist der Energielieferant erschöpft, weil man es ewig nicht benutzt

Tabelle 2: Stüc	kliste des SM	A-Messkopfes	
Bezeichnung	Bauform	Beschreibung	Bezug
K1	4 Loch	SMA-Flanschstecker	[7]
D1	SOD323	Silizium-Schottky-Diode BAT62-03W	[8]
		Low Barrier, Infineon	154041-S3
R1, R2	0805	SMD-Widerstand 100 Ω	verschiedene
R3	0603	SMD-Widerstand 56 Ω	verschiedene
C1	ATC100B	High-Q-Kondensator 100 pF	[7]

hat oder weil man es beim letzten Gebrauch vergessen hat auszuschalten. Damit das nicht passiert, habe ich eine einstell- und abschaltbare Messzeitbegrenzung (5, 10 oder 20 min) realisiert.

Dem Nachbauer ist es freigestellt, welche Batterie- oder Akkumulatorart er zum Betrieb benutzen will. Der mögliche Spannungsbereich ist relativ groß und reicht von 2,0 bis 5,0 V. Auf der später beschriebenen Leiterplatte sind zwei AA-Zellen für die Stromversorgung vorgesehen. Ich persönlich verwende zwei Lithium-AA-Zellen mit

einer Kapazität von 2900 mAh und hoffe, damit mehrere Jahre messen zu können. Finden Akkumulatoren (NiCd oder NiMH) Verwendung, empfiehlt sich das Einstellen der Abschaltspannung in der Software, um schädigende Tiefentladung zu vermeiden.

■ Messkopf

Der SMA-Messkopf ist für den mechanisch versierten Amateur relativ leicht zu realisieren. Nur zwei Teile bedürfen zu ihrer Herstellung einer Drehmaschine. Die zur Gleichrichtung verwendete Diode BAT62 ist bei Conrad Electronic für wenige Cent erhältlich. Bild 2 zeigt den Messkopf im Vergleich zu einem seiner kommerziellen Brüder, dem hp33330B.

Die Schaltung (Bild 3) basiert auf einer Veröffentlichung von Carsten Vieland [4]. Die Messspannung findet in der Parallelschaltung von R1 und R2 ihren wellenwiderstandskorrekten $50\text{-}\Omega\text{-}\text{Abschluss}$. Die in Reihe liegenden Induktivitäten L1 und L2 sind bei niedrigen Frequenzen wirkungslos. Der Widerstand R3 verhindert ein Anwachsen der Richtspannung oberhalb von 700 MHz. Sein Wert wurde experimentell bestimmt.

Das Fehlen eines Koppelkondensators am Eingang sorgt für eine tiefe untere Grenzfrequenz, verbietet aber das Messen an gleichspannungsführenden Quellen, denn R1 und R2 würden dann unter Umständen zerstört! Der mikrowellengeeignete Abblockkondensator C1 glättet die Richtspannung. Den Rest besorgt die Kabelkapazität des Verbindungskabels (RG174) zum Eingangsstecker des Leistungsmessers. Tabelle 2 enthält die verwendeten Bauelemente.

Aufbau

Zentrisch zum Stift des Innenleiters des SMA-4-Lochsteckers ist die Messing-

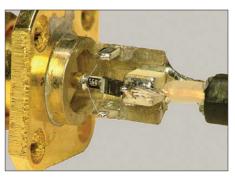


Bild 5: Innenleben des SMA-Messkopfes

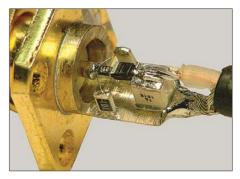


Bild 6: Messkopf aus anderer Perspektive

buchse (Bild 4) plan auf den Flansch aufzulöten. Der Innenleiter ist zuvor auf eine überstehende Länge von 1,5 mm sauber gekürzt worden.

Das genaue zentrische Auflöten ist wichtig, weil zwischen dem Außendurchmesser der Messingbuchse und dem Innendurchmesser des Aluminiumgehäuses nur ein umlaufender Spalt von 0,1 mm besteht. Dieser Arbeitsgang wird wesentlich erleichtert, wenn man sich zur Zentrierung während des Lötens einen kurzen Teflonzylinder (PTFE) mit einem Durchmesser von 4,9 mm und einer Bohrung vom Durchmesser des Innenleiters anfertigt. Natürlich ist dafür auch ein anderes Material verwendbar. Es muss nur die Löttemperatur aushalten.

Danach werden die beiden 100- Ω -Widerstände masseseitig verlötet, wie es in den Bildern 5 und 6 dargestellt ist.

Bild 7: Messkopf fast fertig montiert

Anschließend folgen die anderen Bauelemente. Wichtig ist, dass die Bauelemente R3, D1 und C1 so eng wie möglich aneinander liegen. Die beiden Induktivitäten sind gerade Kupferdrahtstücke von etwa 0,15 mm Durchmesser, die vor dem Löten verzinnt werden. Bevor das RG174-Kabel angelötet wird, schiebt man noch ein 30 mm langes Stück Schrumpfschlauch über das Ende und schrumpft es an. Dies dient als Knickschutz.

Dann kann das Gehäuseteil aufgeschoben (Bild 7) und der SMA-Flansch mit vier Zylinderschrauben M2 × 5 befestigt werden. Eine unten flache Madenschraube M4 × 5 dient als Zugentlastung für das Kabel. Am leistungsmesserseitigen Ende des RG174-Koaxialkabels, das etwa 1 m lang ist, befindet sich eine SMC-Kabelbuchse. Prinzipiell ist es gleichgültig, welcher Ka-



Bild 8: Frequenzabhängigkeit der Richtspannung beim Eigenbau-SMA-Messkopf

beltyp und welche Steckverbindernorm hier verwendet wird. Jedoch ist eine lückenlose Abschirmung Bedingung für das Messen im Pegelbereich unter –30 dBm! Um Thermospannungen zu minimieren, sind vergoldete Kontakte von Vorteil.

Messwerte

Mit kommerzieller Messtechnik (Signalgenerator SML 03 9 kHz bis 3,3 GHz und Power Meter NRVS mit Leistungsmesskopf NRV-Z5, beides von Rohde & Schwarz) habe ich den Verlauf der Richtspannung vom SMA-Messkopf (Bild 8) im Vergleich zu dem des hp33330B-Messkopfes (Bild 9) bei einem Pegel von 0 dBm ermittelt. Leider war die obere Messfrequenz auf 3,3 GHz begrenzt, sodass sich der weitere Verlauf der Richtspannungskennlinie nicht aufnehmen ließ.

Die Richtspannung des SMA-Messkopfes liegt im Frequenzbereich von 100 kHz bis 3,3 GHz innerhalb eines Toleranzbandes von ±0,4 dB (grüne Linien in den Bildern 8 und 9). Auf Leistungen bezogen entspricht das einem Fehler von etwa ±10 %.

Der gemessene hp33330B-Messkopf erfüllt offensichtlich seine in der Spezifikation angegebenen Fehlergrenzen. Für den hp33330B wird eine Toleranz von ±0,3 dB im Frequenzbereich von 10 MHz bis 12 GHz angegeben [3]. Seine untere Frequenzgrenze liegt tatsächlich bei etwa 10 MHz und damit deutlich höher als die des SMA-Messkopfes.

Bild 10 zeigt die Kennlinien, die bei der Kalibrierung im EEPROM des Prozessors abgelegt werden. Es ist der Verlauf der Richtspannung in Abhängigkeit vom Eingangspegel, gemessen in Dezibel pro Milliwatt (dBm). Die Messungen erfolgten bei 100 MHz, weil dort die Kurve etwa in der Mitte des Toleranzbereichs liegt (siehe Bild 8).

Dass die Kurven von beiden Detektoren nahezu deckungsgleich sind, zeigt, dass gleiche Diodentypen (eben Low-Barrier-

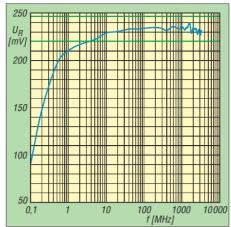


Bild 9: Frequenzabhängigkeit der Richtspannung beim kommerziellen hp33330B

Schottky-Dioden) Verwendung finden. Will man beide Detektoren nebeneinander benutzen, ist es trotzdem nötig, für jeden eine separate Kennlinie abzuspeichern. Ansons-

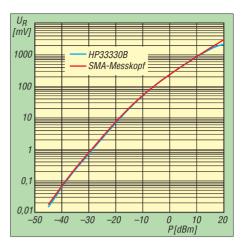


Bild 10: Richtspannung U_R in Abhängigkeit vom Hochfrequenzpegel

ten ist besonders an den Bereichsenden mit deutlichen Fehlern zu rechnen.

Die Rückflussdämpfung (Bild 11) gibt Auskunft über die Qualität der Anpassung im

Tabelle 3: Stückliste Leistungsmesser; alle SMD-Widerstände haben die
Bauform 1206 und sind, ebenso wie die SMD-Kondensatoren (Bauform 0805),
in der Stückliste nicht aufgeführt.

m der Statekniste mehr dangerunt.						
Bezeichnung	Bauform	Beschreibung	Bezug			
IC1, IC3	SO8	DC/DC-Konverter LT1302 CS8	[9]			
IC2	SO8	CMOS-Spannungskonverter ICL7660CSA MAXIM	[10] oder [11]			
IC4	SO16	Analogschalter DG403DYZ, Intersil, Vishay				
		oder MAX383CSE MAXIM	[10] oder [11]			
IC5, IC6	SO8	Operationsverstärker AD706JR	[9]			
IC7	TQFP44	Mikrorechner ATmega32 16AU	[9]			
IC8, IC9, IC11	DIL8	Optokoppler 6N136	[9]			
IC10	SO14	Logikschaltkreis 74HC00	verschiedene			
IC12	SC70	Digital-Analog-Umsetzer AD5622YKSZ,	· crocinc denie			
1012	5070	Analog Devices	[11] oder [12]			
T1	SOT223	P-Kanal-MOSFET BSP613P, Infineon	[11] oder [12]			
11	301223	P-Kanal-MOSFET BSP250, Philips	[8]			
D1, D2	SMB	Schottky-Diode STPS340U				
D1, D2	SIVID	Schouky-Diode STPS5400	[8]			
D2	СОТО	7 D' 1 D7W04 4W2	155477-29			
D3	SOT23	Z-Diode BZX84-4V3	verschiedene			
D4	SOT23	Z-Diode BZX84-5V1	verschiedene			
D5D13	SOD80	Siliziumdiode LL4148	verschiedene			
Q1	HC49	16-MHz-Quarz SMD	[9]			
Q2		Mini-Uhrenquarz 32,768 kHz, Ø 2 × 6 mm				
C2, C4, C7C9,	RM5	Aluminiumelektrolytkondensator radial mit	[8]			
C13, C16, C27		kleinem ESR, $100 \mu F$, 50 V , $\emptyset 10$, $h = 12$	446122-15			
C5, C6	В	Tantalkondensator 10 μ, 6,3 V	verschiedene			
C11	RM5	Aluminiumelektrolytkondensator radial,				
		$470 \mu\text{F}, 10 \text{V}, \text{h} = 12$	verschiedene			
R15		SMD-Trimmpotenziometer 25 kΩ	[9]			
R46		SMD-Trimmpotenziometer 47 kΩ	[8]			
		1	421068-62			
R49		SMD-Trimmpotenziometer 470 kΩ	[9]			
L1, L2	RM 5	Induktivität 33 µH mit Schrumpfschlauch	[8]			
B1, B2	10113	induktivitat 35 pii init Seniampisemaaen	440354-62			
L4		Induktivität 33 µH mit Schrumpfschlauch,	110331 02			
L4		Wicklung entfernt, 2×0.3 mm CuL. verdrillt,	[8]			
		32 Wdg., Polung beachten (siehe Schaltung)	440354-62			
L3	1812	HF-Drossel 10 µH, SMD	[8]			
L3	1012	HΓ-DIOSSEI IO μΠ, SIVID	501581-62			
V1 V4		Vantalita fiin A A Zalla				
K1K4		Kontakte für AA-Zelle	[8]			
WOLLD WOLLDS		CMCW 1 C'' C'	651036-15			
K6/7, K21/22	2.54	SMC-Kupplung für Crimpmontage	verschiedene			
K12	2,54	Wannensteckerleiste, gerade, 10-polig	[9]			
K5, K1319	2,54	8-polige Präzisionsbuchsenleiste	verschiedene			
K20	2,54 x	Präzisions-IC-Fassung 14-polig	verschiedene			
	7,62					
Gehäuse	Pultform	Kunststoffgehäuse Hand Held	[8]			
			543863-29			
PLED-Display		EA8162-XLG, 2 × 16 Zeichen oder normales				
		LCD-Modul 2 × 16 Zeichen	[9]			

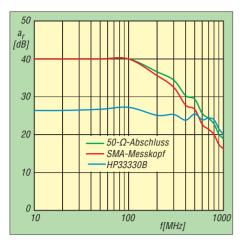


Bild 11: Rückflussdämpfung a_r für beide Messköpfe in Abhängigkeit von der Frequenz; grün: kommerziell hergestellter 50- Ω -Abschlusswiderstand zum Vergleich

50-Ω-System. Leider konnte ich sie nur bis 1 GHz ermitteln. Da der zur Messung verwendete bidirektionale Richtkoppler CH-132 bei seiner oberen Grenzfrequenz von 1 GHz lediglich eine Richtschärfe von 25 dB aufweist, gehen dort alle drei Messkurven nach unten. Zum Vergleich wurde hier als drittes Messobjekt ein kommerzieller Abschlusswiderstand dargestellt, dessen obere Frequenzgrenze mit 3 GHz spezifiziert ist. Es ist ersichtlich, dass der hp33330B-Messkopf zwar bei niedrigen Frequenzen nicht unbedingt Traumwerte aufweist, aber bei 1 GHz ist er besser als der SMA-Messkopf.

■ Leistungsmesser

Herzstück der Schaltung ist der Mikrocontroller ATmega 32 von Atmel. Er enthält die umfangreiche Software (zz. etwa 26 KByte) in seinem Flashspeicher sowie die drei Detektorkennlinien in seinem EEPROM-Bereich. Außerdem werden dort alle aktuell vom Benutzer ausgewählten Einstellungen, z. B. die Namen der Detektoren, die ausgewählte Abschaltzeit und-spannung sowie die gewählte Darstellart, hinterlegt. Dadurch ist es kein großes Problem, wenn beim Messen plötzlich die Anzeige verlischt, weil der Abschaltzeitpunkt erreicht wurde. Ein Druck auf die Ein-

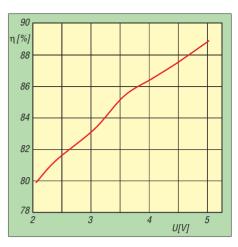
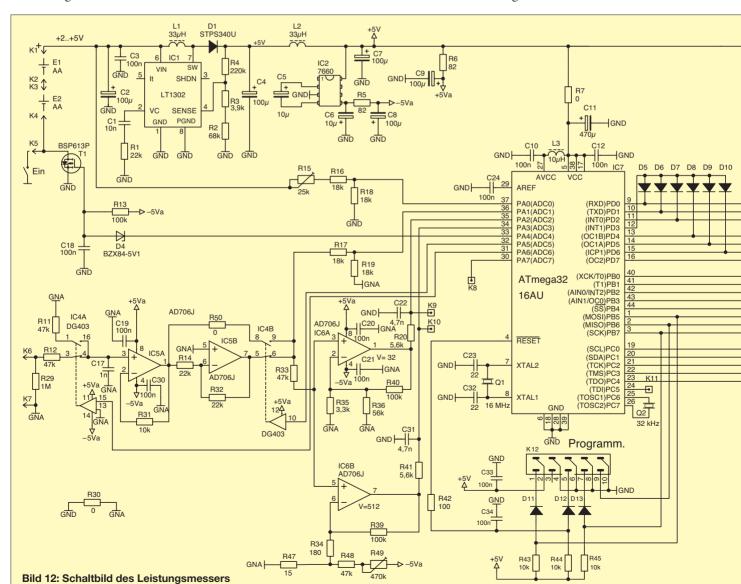



Bild 13: Gemessener Wirkungsgrad η des Schaltreglers mit IC1 in Abhängigkeit von der Batteriespannung

Taste genügt und das Messen in der vorherigen Darstellart geht weiter. Gleichzeitig hat der Mikrocontroller bei dieser Gelegenheit noch eine Offset-Kalibrierung durchgeführt, was ohnehin von Zeit zu Zeit ganz nützlich ist.

Eine direkte Ankopplung an den Stations-PC habe ich nicht vorgesehen. Trotzdem gibt es die Möglichkeit, die vom Gerät bereitgestellte analoge Dezibel-lineare Ausgangsspannung dem PC z. B. über einen USB-Analog-Digital-Umsetzer (einfachstenfalls ein Digitalmultimeter mit serieller Schnittstelle) zugänglich zu machen.

■ Schaltungsbeschreibung

Ein geschalteter Aufwärtsregler mit IC1 (Bild 12) erzeugt aus der Batteriespannung eine stabile Spannung von +5 V, die alle Schaltungsteile versorgt. Die Dimensionierung der Schaltung erfolgte entsprechend dem Datenblatt [6]. Die einzige notwendige Induktivität L1 ist fertig erhältlich (siehe Stückliste Tabelle 3). Bild 13 zeigt den Wirkungsgrad als Funktion der Batteriespannung.

Die erzeugte 5-V-Spannung wird mit L2 und C7 gesiebt und im CMOS-Spannungskonverter ICL7660 (IC2) in eine betragsmäßig gleiche, aber negative Spannung umgewandelt, die zur Versorgung der bei-

den OPV AD706 dient. Auch hier beseitigt ein Siebglied R5/C8 letzte Schaltgeräusche. Zur Versorgung des Digital-Analog-Umsetzers (IC12) ist eine weitere Versorgungsspannung von 5 V erforderlich, die jedoch galvanisch getrennt von der übrigen Schaltung erzeugt werden muss, damit ein an K21 angeschlossenes netzbetriebenes Gerät, z.B. ein Oszilloskop, keine Brummspannung in die Schaltung einstreuen kann.

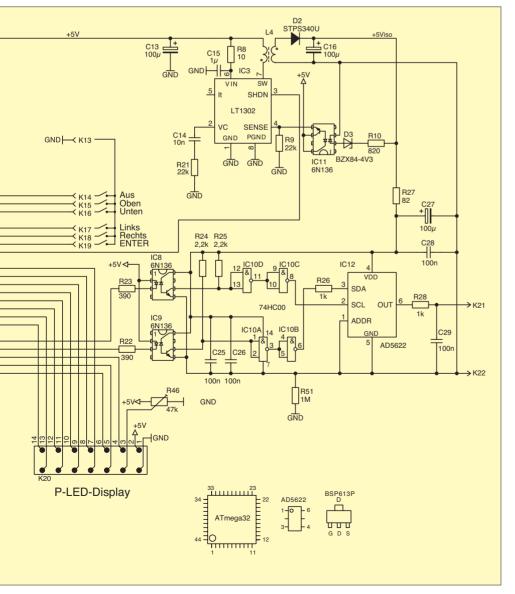
Dies erledigt der Schaltwandler IC3, ein weiterer Baustein LT1302. Der Übertrager L4 ist leider nicht fertig erhältlich und muss selbst gewickelt werden. Aber das ist nicht schwer: Von einer 33- μ H-Festinduktivität entfernt man die Wicklung komplett und bringt dann 32 Windungen eines verdrillten Kupferlackdrahtes von zweimal 0,3 mm Durchmesser auf. Natürlich ist auf die richtige Polung der beiden Wicklungen gemäß dem Schaltbild zu achten.

Damit die erzeugte Spannung stabil ist, erfolgt über R10, der Z-Diode D3 und den Optokoppler IC11 eine Rückführung auf

den Sense-(Fühler-)Eingang des Wandlerschaltkreises. Der Wirkungsgrad dieses zweiten Gleichspannungskonverters ist mit 60 % recht gering, aber bei einem Strombedarf des D/A-Umsetzers einschließlich IC10 (74HC00) von etwa 1 mA ist das zu verschmerzen.

Außerdem ist dieser Konverter nur eingeschaltet, wenn der Anwender eine dem Messwert proportionale Ausgangsspannung wünscht.

Die Aufbereitung des Signals vom Messkopf erfordert einige Überlegungen: Der vom Messkopf gelieferte Pegelbereich reicht von 5 μ V bis zu 3 V. Ein A/D-Umsetzer mit 20 Bit Auflösung könnte Spannungen im Bereich von 0 bis 5 V mit einer Schrittweite von 5 μ V darstellen.

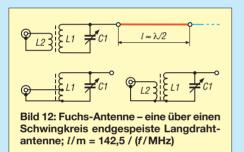

Derartige Analog-Digital-Wandler gibt es in integrierter Form, aber sie sind relativ langsam in der Umsetzung und ihre fantastisch kleine Schrittweite ist eigentlich nur bei den kleinsten zu messenden Pegeln erforderlich. Außerdem bliebe bei einer solchen Lösung der im Mikrocontroller ATmega32 vorhandene 10-Bit-ADU ungenutzt. Dies ist nicht effektiv.

In der folgenden Ausgabe vollende ich die Schaltungsbeschreibung und erläutere Aufbau, Inbetriebnahme, Kalibrierung und Anwendung des Leistungsmessers. Auch das Layout der 83 mm × 149 mm messenden, doppelseitigen Platine wird vorgestellt. (wird fortgesetzt)

g.zobel@nexgo.de

Literatur

- [1] Gerlach, I., DH1AAD: Direktanzeigendes Milliwattmeter mit AD8361. FUNKAMATEUR 52 (2003), H. 8, S. 792–795
- [2] Schneider, W.: HF-Kleinleistungsmesser (dBm) mit Detektor AD 8362, UKW-Berichte 45 (2005) H. 1. S. 13–20
- [3] Agilent Technologies, Inc.: 33330B Low-Barrier Schottky Diode Detector, Datenblatt; www.home.agilent.com
- [4] Vieland, C.: Diodendetektoren in 50-Ω-Breitbandtechnik. UKW-Berichte 27 (1987) H. 4, S. 223–237
- Meier, A., DG6RBP: Digitales mW-Meter, UKW-Berichte 42 (2002) H. 4, S. 243–248
 Datenblatt: Linear Technology LT1302/LT1302-5,
- www.linear-tech.com
 [7] Rainer Jäger, Antennen HF-Komponenten, Bres-
- lauer Str. 4, 25479 Ellerau, Tel. (04106) 73430, Fax 761288, E-Mail: rain-rjaeger@hanse.net
- [8] Conrad Electronic SE: Klaus-Conrad-Str. 1, 92240 Hirschau, Tel. 0180 53121-11; www.conrad.de
- [9] Reichelt Elektronik GmbH & Co. KG, Elektronikring 1, 26452 Sande, Tel. (0 44 22) 95 5-333, Fax -111; www.reichelt.de
- [10] RS Components GmbH, Hessenring 13b, 64546 Mörfelden-Walldorf, Tel. (0 61 05) 401-234; www.rsonline.de
- [11] Sander electronIC, Dr.-Ing. Klaus Sander, Postfach 350564, 10214 Berlin, Tel. (030) 29 49 17-94, Fax -95; www.sander-electronic.de
- [12] Spoerle, Arrow Central Europe GmbH, Max-Planck-Str. 1–3, 63303 Dreieich, Tel. (06103) 304-0; www.spoerle.de



KW-Antennen für den Einstieg (3)

Dr.-Ing. WERNER HEGEWALD - DL2RD

In dieser Ausgabe kommen weitere, horizontal gespannte Dipolvarianten zur Sprache. Dabei wird ferner auf mögliche TVI-Probleme endgespeister Antennen eingegangen.

Ergänzend zur vorigen Ausgabe sei noch erwähnt, dass sich Dipole genau wie Groundplane-Antennen durch Einfügen von Verlängerungsspulen (hier symmetrisch, in jedem Dipolzweig eine) verkürzen lassen. Eine Verkürzung bis auf 50 % ist nach [12] realistisch. Diese Herangehensweise wird auch in [3] und [13] ausführlich diskutiert. Fakt ist, dass Berechnung, Bau und Abgleich der Spulen sowie deren zugfeste Installation innerhalb der Dipolstruktur einige Erfahrungen erfordern. Interessenten seien auf [12] verwiesen; Excel-Arbeitsblätter zur Berechnung der Spulen siehe [14].

■ Endgespeiste Dipolvarianten

Nun möchte ich auf Langdrahtantennen in Zusammenhang mit MTFT (engl. magnetic transformer for transmitting) eingehen, oft fälschlicherweise Balun anstatt Unun genannt, siehe Bild 4 der ersten Folge. Grundgedanke ist eigentlich, dass hier ein Halbwellendipol (oder 2 $\lambda/2$, 3 $\lambda/2$, ...) nicht in seiner Mitte, sondern an einem seiner Enden, also hochohmig (Spannungsbauch/Stromknoten), gespeist wird. Das ist insbesondere dann sinnvoll, wenn sich die Einspeisung in der Mitte mechanisch nur schwierig realisieren lässt.

Fuchs-Antenne

Um das Prinzip zu verstehen, schauen wir uns zunächst die nach dem österreichischen Funkamateur Dr. Josef Fuchs, OE1JF, benannte Urform dieser Antenne, nämlich die Fuchs-Antenne in Bild 12, an. Das hochohmige Ende des Halbwellendipols ist mit einem Schwingkreis verbunden, der – auf die Resonanzfrequenz des Halbwellendipols abgestimmt – ebenfalls hochohmig ist. Eine Koppelwicklung besorgt die Anpassung an die 50 Ω der Speiseleitung. Mögliche Varianten der Ankopplung zeigt Bild 12 unten.

In [15] sind erprobte Werte für alle Amateurbänder von 80 m bis 10 m angegeben. Für die Ansteuerung mit 100 W auf 80 m erscheint ein Eisenpulver-Ringkern T200-2 [16] geeignet, der 29 Wdg. CuL mit 0,8 mm bis 1,0 mm Durchmesser erhält. Für die Koppelwicklung bzw. Anzapfung gibt [15]

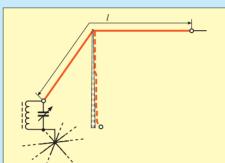


Bild 13: Der $\lambda/2$ lange Strahler der Fuchs-Antenne lässt sich auch knicken und dadurch leichter unterbringen; zum Erdungsnetz siehe Text.

1 bis 4 Wdg. an (ausprobieren!); als Drehkondensator eignet sich eine 200 ... 250-pF-Ausführung [17], die mindestens 1 kV vertragen muss. Mit einigem mechanischen Geschick lässt sich so etwas aus einem 500-pF-Rundfunkdrehkondensator durch Heraustrennen ieder zweiten Platte gewinnen. Für das Abstimmen unter Leistung ist ein isolierter Drehknopf unabdingbar, dessen Befestigungsschraube versenkt ist! Die Fuchs-Antenne kann man sowohl in der Horizontal- als auch in der Vertikalebene geknickt aufhängen, wodurch sich die rund 40 m Draht für das 80-m-Band vielleicht leichter unterbringen lassen, siehe Bild 13.

J-Antenne

Eine ohne Spule und Kondensator zu realisierende Variante der Fuchs-Antenne ist die J-Antenne. Bei dieser ist das hochohmige Ende des Halbwellendipols mit einem Leiter einer am anderen Ende kurzgeschlossenen Paralleldrahtleitung verbunden, welche an einer Anzapfung die Transformation auf 50 Ω besorgt. In [18] hat DK7ZB Maße für alle Amateurfunkbänder von 2 m bis 40 m angegeben. Für 80 m kann man als Anhaltspunkt die 40-m-Werte verdoppeln, ein Abgleich ist ohnehin erforderlich. Nachteilig sind jedoch die dann 19 m lange Paralleldrahtleitung (diese muss jedoch nicht zwingend gerade gespannt werden) sowie die

Antennentuner und -koppler

In der Literatur kursieren hierfür leider verschiedenste Bezeichnungen. Im FA wenden wir folgende, einheitliche Nomenklatur an:

■ Antennentuner (AT)

 \dots heißt ein im Transceiver integriertes Antennenanpassgerät (so wird er auch seitens der Hersteller bezeichnet). Der AT hat meist nur einen begrenzten Abstimmbereich, etwa bis zu einem Stehwellenverhältnis s=3...4, da er lediglich für eine Feinabstimmung (engl. tuning) sorgen soll.

Antennenkoppler

... heißt ein separates, meist auch räumlich größeres Gerät, das eine Antennenanpassung über einen weiten Impedanzbereich bewirken kann. Antennenkoppler gibt es als Beistellgeräte wie auch als abgesetzt nahe der Antenne installierbare Geräte. Beste (und teuerste) Wahl sind ferngesteuerte, wetterfeste Ausführungen zur Montage direkt an der Antenne.

geringe Bandbreite von nur etwa 50 kHz. Die J-Antenne kann man sowohl horizontal als auch vertikal anbringen und die kurzgeschlossene Paralleldrahtleitung muss nicht mit dem Strahler auf einer Achse liegen.

MTFT

Um das lästige Abstimmen des zudem am Endpunkt der Antenne befindlichen Fuchs-Kreises zu umgehen, sind findige Köpfe auf die Idee gekommen, den Kondensator wegzulassen. Übrig bleibt ein Transforma-

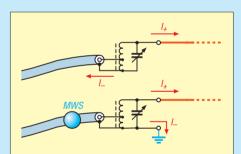


Bild 14: Ohne ein Erdungsnetz fließt der hochfrequente Rückstrom über das Koaxialkabel und andere Leitungen ins Shack. Mantelwellensperre MWS nicht vergessen!

tor (*MTFT*), der die hohe Impedanz im Verhältnis des Quadrats seiner Windungszahlen $(w_1/w_2)^2$ heruntertransformiert. Die verbleibende Fehlanpassung kann oftmals der in modernen Transceivern integrierte Antennentuner (*AT*) ausgleichen. Ansonsten wird ein externer Antennenkoppler benötigt – hierzu siehe Kasten!

Wohin fließt der Strom?

Wohl jeder Leser hat als Kind einmal einen elektrischen Stromkreis mit einer Glühlampe oder einer Klingel auf einem Brett aufgebaut. Seitdem wissen wir, dass Strom, egal ob Gleich- oder Wechselstrom, stets zwei Drähte zum Fließen benötigt ;-) Das ist auch bei hochfrequenten Strömen nicht

prinzipiell anders! In der Urform der Fuchs-Antenne gemäß Bild 12 oben besitzt der Schwingkreis aber gar keinen Masseanschluss. Solange der Strahler exakt Halbwellenresonanz aufweist und der Schwingkreis auf dieselbe Frequenz abgestimmt ist, fließt nur ein sehr geringer Strom. Das ist auch noch bei Vielfachen von $\lambda/2$ der jeweiligen Betriebswellenlänge der Fall, was die Fuchs-Antenne bzw.

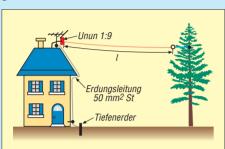


Bild 15: In letzter Zeit erfreuen sich endgespeiste nichtresonante Drahtantennen in Zusammenhang mit einem Unun 1:9 (auch MTFT-"Balun" genannt) wachsender Beliebtheit. Für 80-m-Sendebetrieb sind mehr als l=20 m anzustreben!

den MTFT ja so interessant macht – ein für 80 m bemessener Halbwellendipol ist beispielsweise auch auf 40 m, 20 m, 15 m und 10 m (annähernd) resonant. Während jedoch der Schwingkreis der Fuchs-Antenne bei Bandwechsel nachgestimmt oder umgeschaltet werden muss, ist man mit

Bild 16: Kommerziell hergestellte Mantelwellensperre zum Einschleifen in das Speisekabel Werkfoto: WiMo

dem MTFT fein heraus (innerhalb der spezifizierten Bandbreite, die vom Kernmaterial abhängt).

Problematisch wird es erst, wenn die Resonanzbedingung nicht mehr genau stimmt. Das trifft insbesondere beim MTFT zu,

Bild 17: Einfache Mantelwellensperre durch geordnetes Aufwickeln des Koaxialkabels (hier Aircell 7) zur Spule; bei 10 Wdg. bringt ein PVC-Rohr Stabilität. Foto: Red. FA

wenn über diesen ein x-beliebiger Draht zum Strahlen gebracht (oder gequält) werden soll. Die für den MTFT oft empfohlenen 20 m Draht sind auf 3,5 MHz nur $\lambda/4$ lang, d. h., die Einspeisung erfolgt dann genau im Strombauch, wo die Antenne niederohmig ist. Ohne eine HF-taugliche Erdung sucht sich der hochfrequente Rückstrom über das Koaxialkabel, aber auch über Fernmelde-, Antennen-, Netz-

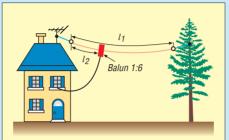


Bild 18: Mit l_1 = 41,5 m und l_2 = 13,8 m überstreicht diese nach Kurt Fritzel, DJ2XH, FD4 (Fritzel-Dipol) genannte Antenne vom Windom-Typ koaxialgespeist die Bänder 80, 40, 20, 17, 12 und 10 m – leider nicht 15 m. Auf 80 m ist ein AT nötig.

werk- und sonstige Leitungen in unmittelbarer Nähe, seinen Weg, was im Shack sowie im eigenen und in benachbarten Haushalten zu erheblichen Störungen führen kann.

Selbst eine einfache Erdungs- oder Potenzialausgleichleitung, wie sie für Antennenmasten vorgeschrieben ist (Bild 15), genügt nur bei geringen Rückströmen, also geringen Abweichungen der Länge von $n \cdot \lambda/2$ (n ganzzahlig). Soll der MTFT Drähte beliebiger Länge anpassen, bedarf es einer HF-gerechten Erdung (Bild 14 unten), beispielsweise durch Radials (Bild 13 – der Einspeisepunkt liegt dann kurz über der Erde) oder ein großflächiges Blechdach (mehr hierzu später im Zusammenhang mit Groundplane-Antennen).

Besondere Beachtung ist der Mantelwellensperre zu schenken, denn erst sie verhindert, dass wirklich keine HF-Ströme den Außenleiter der Speiseleitung entlang fließen und die gefürchteten Mantelwellen verursachen, welche zu BCI, TVI, Brummeinstreuungen ins Mikrofon, vagabundierender HF im Shack usw. führen. Man kann so etwas käuflich als ein am Speisepunkt einzuschleifendes Bauteil erwerben (ein Beispiel zeigt Bild 16), eine größere Anzahl Klappferrite oder Ringkerne auf das Speisekabel schieben, das Koaxialkabel in der Nähe des Speisepunktes aufwickeln (für 80 m etwa 10 Wdg., sauber Windung neben Windung gelegt, Spulendurchmesser 100 mm bis 200 mm, Bild 17) oder das Speisekabel 10 bis 12 Wdg. durch einen großen Ringkern wickeln. Wer über einen Netzwerktester/-analysator verfügt, kann das durch eine Durchgangsmessung mittels eines Testkabels (Außenleiter beider Enden jeweils einbeinig am Eingang und Ausgang des NWT anklemmen) verifizieren, die Durchgangsdämpfung muss im fraglichen Frequenzbereich möglichst groß sein.

Alles in allem ist der – zunächst sehr einfach erscheinende – endgespeiste Dipol doch etwas mit Vorsicht zu genießen bzw. der Aufwand wird bei sachgemäßer Installation erheblich größer als zunächst erwartet. Für Fielddays und andere Portabel-Aktivitäten, wo kaum TVI und BCI zu befürchten sind, erweisen sich Fuchs-Kreis und MTFT als gute Wahl.

■ Weitere Dipolformen

Am Ende dieser Folge sei noch auf einige Dipolformen hingewiesen, die sich auf mehreren Bändern einsetzen lassen. Sehr bekannt ist die so genannte Windom-Antenne. Durch geschickte unsymmetrische Speisung wird erreicht, dass gleichzeitig auf mehreren Bändern Resonanz besteht. Karl Hille, DL1VU, hat diesem Phänomen ein ganzes Büchlein gewidmet [19]. Besonders elegant handhabbar – weil über Koaxialkabel gespeist – ist die hierzulande sehr verbreitete FD4, siehe Bild 18. Es gibt zudem eine verkürzte Bauform FD3 (nur bis 40 m) sowie eine verlängerte FD5, die noch das 160-m-Band umfasst. In der kommerziell erhältlichen Version [20] beinhaltet der in Bild 18 dargestellte Balun zusätzlich eine ausgeklügelte Mantelwellensperre, da die unsymmetrische Speisung ansonsten zu TVI führen kann. Daher muss auch die Speiseleitung konsequent senkrecht von der Antenne hinwegführen.

(wird fortgesetzt) dl2rd@funkamateur.de

Literatur

- [12] Klüß, A., DF2BC: Kurzwellendrahtantennen für Funkamateure. 4. überarb. u. erw. Aufl., vth, Baden-Baden 2005; FA-Leserservice V-3364
- [13] Janzen, G., DF6SJ: Kurze Antennen. Franckh-Verlag, Stuttgart 1986; FA: *J-4691*
- [14] von der Ruhr, B., DC1DV: Excel-Arbeitsblatt Antennenberechnungen.xls. Zugabe zum Beitrag [7] auf der FA-Jahrgangs-CD 2007; FA: FC-007
- [15] Zander, B., DL6YCG: Die "Fuchsantenne" eine interessante Antenne für den Outdoor- und QRP-Aktivisten. QRP-Report 1 (1997) H. 2, S. 24-25; FA: QR-972
- [16] Reichelt Elektronik GmbH & Co. KG, Elektronikring 1, 26452 Sande, Tel. (0 44 22) 95 5-3 33, Fax -1 11; www.reichelt.de
- [17] Frag Jan Zuerst Ask Jan First GmbH & Co. KG: Röhren und vieles mehr. Preiler Ring 10, 25774 Lehe; Tel. (04882) 6054551; www.fjz-ajf.de
- [18] Steyer, M., DK7ZB: J-Antennen f
 ür KW und UKW mit 450-Ω-Wireman-Kabel. FUNKAMA-TEUR 54 (2005) H. 12, S. 1260–1261
- [19] Hille, K.-H., DL1VU: Windom- und Stromsummen-Antennen. FA-Bibliothek Band 15, Theuberger Verlag, Berlin 2000; FA: X-9141
- [20] hoFi Hochfrequenztechnik GmbH & Co. KG, Wittenbacher Straße 12, 91614 Mönchsroth, Tel. (09853) 1003; www.hofi.de

80-m-Vertikalantenne mit Spiderbeam als Dachkapazität

EIKE BARTHELS - DM3ML

Nach einer hoffnungsvollen EZNEC-Simulation wird aus einem 12-m-Kurbelmast mit einem Spiderbeam als Dachkapazität eine 80-m-Vertikalantenne für die Zeit zwischen Sommer- und Wintersaison.

Meinen Kurbelmast mit 160-m-Vertikalantenne im Familiengarten am Dresdner Stadtrand habe ich in [1] schon vorgestellt. Im Sommer trägt er einen Spiderbeam mit Rotor (Bild 1). Im Winter wird der Spiderbeam normalerweise abgebaut und zerlegt, um den Kurbelmast mit Verlängerung als Vertikalantenne zu betreiben. Mantelwellensperre angeschlossen und verlaufen im Bild 1 von Nord nach Süd. Der 15-m-Strahler verläuft parallel zum Boom, die 10/12-m-bzw. 17/20-m-Strahler in 0.4 m bzw. 0.8 m Abstand. Die restlichen neun Elemente (je ein Reflektor je Band und vier Direktoren, nämlich 2×10 m, 1×15 m und 1×20 m) sind V-förmig mon-

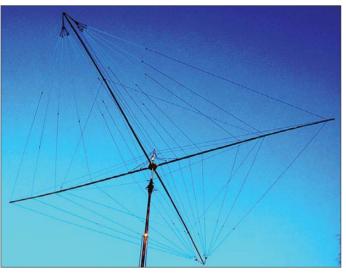
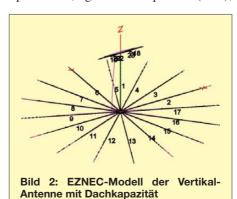


Bild 1: Spiderbeam auf dem Kurbelmast

In [1] habe ich beschrieben, wie aus der verkürzten und geerdeten Vertikalantenne mit Omega-Einspeisung nebst Anpassschaltung ein unverkürzter und mit Teflonfolie gegen das tragende U-Profil isolierter $\lambda/4$ -Strahler wahlweise für 160 m oder 80 m wurde


Als Anfang Oktober 2008 die Expedition VK9DWX in die Luft ging, wollte ich sie gerne mit einer Vertikalantenne mindestens auf 80 m und mit dem Spiderbeam auf den höheren Bändern arbeiten und suchte nach einem Kompromiss, bei dem der Spiderbeam oben und nutzbar bleiben, aber mit ein paar steckbaren Brücken als Dachkapazität für den Kurbelmast genutzt werden sollte. Wo die Resonanz des Systems liegen würde, stand in den Sternen. Aber: nicht verzagen – EZNEC fragen.

■ EZNEC-Simulation

Der Spiderbeam [2] besteht aus einem Kreuz von vier 5 m langen Glasfiberrohren, die in der Mitte in einem Kreuzstück aus Aluminiumblechen und -rohren stecken. Die Strahler für 10, 12, 15, 17 und 20 m sind parallel am Balun bzw. der

tiert, vollständig isoliert und können bei der EZNEC-Simulation vernachlässigt werden.

Ganz nebenbei: Der Spiderbeam ist die beste Antenne, die ich in meinen fast 50 Jahren Funkpraxis verwendet habe. Beeindruckend sind der Wirkungsgrad und das vorzügliche Vor-Rück-Verhältnis. Wie sagte doch OT Simon aus Franken, DL3SPA, zu UKW-Contesten in den 60er-Jahren über seine neue Antenne: Wo I die hinhalt, da schepperts. Genau das macht der Spiderbeam, egal ob mit Spatz-20 (4 W),

IC-7000 barfuß (100 W) oder ACOM-1010 (600 W).

Bei der EZNEC-Simulation ging ich von der Anordnung wie in [1] ohne 10-m-Armeepeitsche, aber mit den geerdeten und zusammengeschalteten Elementen des Spiderbeams aus. Bild 2 zeigt den Kranz aus 16 Stück 20 m langen Radials (#2 bis #17), den isolierten Kurbelmast #1 (12+1 m lang) und die oben mit ihm verbundenen Strahler des Spiderbeams.

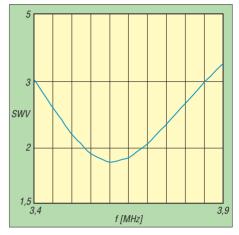


Bild 3: Simulierter Verlauf des SWV

Die Überraschung kam bei der Berechnung des SWV (Bild 3). Die Resonanz des Systems lag auf Anhieb genau da, wo sie liegen sollte, also im CW-Bereich des 80-m-Bandes. Hätte sie zu tief gelegen, hätte ich den Kurbelmast etwas hinunterdrehen können, hätte sie zu hoch gelegen, wäre guter Rat teuer gewesen.

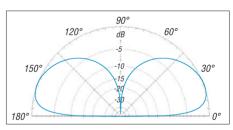


Bild 4: Simuliertes Vertikaldiagramm der Antenne über realem Boden (MiniNEC) mit σ = 0,0303 S/m und ε_r = 20, äußerer Ring 0,4 dBd

Das Richtdiagramm über realem Boden (Bild 4) zeigt einen Erhebungswinkel von 20° und sogar einen kleinen Gewinn von 0,4 dB über einem Dipol.

■ Reale Antenne

Der Umbau zur Vertikal war schnell erledigt. Die beiden Dipolhälften bekamen kurze Autostecker, um den Beam schnell wieder auf "Beam" umbauen zu können. An die Autostecker wurden 4-mm²-Litzen (lila) angesteckt und mit der geerdeten Mittenkonstruktion verbunden (Bild 5).

Den Rotor überbrückte ich mit einer weiteren kräftigen Litze (rot), das Speisekabel für den Spiderbeam und das Rotorsteuerkabel

Bild 5: Geerdete Strahler am Spiderbeam

Fotos: DM3ML

wurden abgezogen, zusammen aufgewickelt und unterhalb des Rotors angebunden. Dann der spannende Moment: Kurbelmast mitsamt Kabelbündeln und Spiderbeam hochgedreht und der MFJ-Antennenanalysator angeschaltet:

Theorie (EZNEC) und Praxis (Spiderbeam-Vertikalantenne) stimmten zu 95 % überein. Die Frequenzabweichung war minimal, der Fußpunktwiderstand lag bedingt durch die üblichen Erdverluste um etwa 5 Ω geringfügig höher und für das SWV günstiger. Zur Verwendung der Vertikalantenne am oberen Ende des 80-m-Bandes war sie um 1 m herunterzudrehen. Meine 600-W-End-

stufe ACOM-1010 zeigte sich sehr zufrieden mit der Antenne und ließ sich, ohne an der Antenne zu kurbeln, sowohl im CW- als auch im SSB-Bereich voll aussteuern.

■ Praktische Ergebnisse

Am 4. 10.08 lief der VK/ZL-Contest in SSB und VK4KW war abends auf 3790 kHz gut zu hören. Ich kam gleich als Nächster dran und konnte tatsächlich mein Rufzeichen durchbringen. Es folgten Tony, ZL2AGY (auf meinen CQ-Ruf), bei 3505 kHz in CW und nach Absuchen des Bandes Nelson, 4S7NE, und die DXpedition 3V8SS. Die Antenne ging!

Am 10. 10. 08 sollte VK9DWX erscheinen. Es war lange noch nicht dunkel, als während des Antennenbaus einsam laut und deutlich BA7IO bei 3505 kHz lange und vergeblich CQ rief. Als ich endlich fertig war, war er aber ins Bett gegangen. Kurz danach ging es mit VK9DWX auf 80 m los. Er kam so laut an, dass viele an einen Spaßvogel oder Piraten glaubten. Nach dem Motto "Work first, worry later" war ich aber bald dran und hocherfreut, als mein Call später im Online-Log erschien.

Seit Ende Oktober liegt der Spiderbeam verpackt auf dem Dachboden und wartet auf seine sechste Saison in 2009, diesmal mit neuen Heavy-duty-Rohren. Der Kurbelmast wird wieder wie unter [1] beschrieben angesteuert. Ich habe mir noch Mühe gegeben, damit VK9DWX auf 160 m zu arbeiten, aber er kam an meiner K9AY-RX-Antenne [1] nur für eine Minute aus dem Rauschen hoch und verschwand auf Nimmerwiederhören ...

www.qrz.com/dm3ml

Literatur

- [1] Barthels, E., DM3ML: 160-m-DX aus dem Garten. FUNKAMATEUR 57 (2008) H. 4, S. 414–417
- [2] Paul, C., DF4SA: Spiderbeam. http://spiderbeam. com
- [3] Devoldere, J., ON4UN: Low-Band DXing. 4. Aufl., ARRL, Newingtom 2005, FA-Leserservice A-9140

Sicher sprechen beim Mobilfunk

Angeregt durch den Beitrag [1], möchte ich hier einen anderen – preisgünstigen, wenn auch nicht drahtlosen – Weg vorstellen, den ich seit etwa 30 Jahren gehe. Als Zusatz zu meinem SRC 828 hatte ich damals ein so genanntes Handfrei-Mikrofon gekauft, das ich jetzt erst wieder aktiviert und an meinen FT-4700RH angeschlossen habe. Das Mikrofon wird am Sicherheitsgurt befestigt.

Bild 1: Das Mikrofon ist mit einer Klammer am Sicherheitsgurt befestigt.

Es handelt sich dabei um ein PC-Mikrofon, das einmal auf einem Ständer aufgesteckt war. Das Rohr, durch welches das Mikrofonkabel führt, habe ich 50 mm hinter dem Mikrofon abgesägt (vorher Kabel herausgezogen) und an eine Wäscheklammer aus Kunststoff geklebt. In einer Rohrhülse, die am Wischerhebel mit einem O-Ring befestigt ist, befindet sich ein kleiner Verstärker mit einem Transistor. Das Ganze wird aus dem Mikrofonanschluss (Pin 2) des FT-4700RH mit 5 V gespeist. Die Speisung des Verstärkers musste ich mit 470 µF glätten, weil die Gleichspannung mit Pulsen überlagert ist.

Bleibt die Frage, warum ein PC-Mikrofon? Ganz einfach, weil dieses mit 5 V arbeitet. Die anderen bei mir vorhandenen mussten mit höherer Spannung, z. B. über eine 9-V-Batterie, extern versorgt werden.

Einen anderenWeg hatte ich ein paar Jahre verfolgt. Ich besorgte damals im Elektronik-Fachhandel einen kleinen Verstärker und speiste diesen extern über eine 9-V-Batterie. Das Ganze fand in einem kleinen Kunststoffgehäuse Platz und ließ sich auf der Mittelkonsole des Fahrzeugs ablegen. In diesem Fall war jedoch der Ausgang des Mikrofons NF-mäßig an den Verstärker anzupassen (Trimmer 1 k Ω , nicht kritisch), um diesen nicht zu übersteuern. Derartige Verstärker gibt es heute in SMD-Technik, also recht klein. In die Mikrofonleitung habe ich eine Kupplung eingebaut, damit die Leitung beim

Bild 2: Ansicht des Mikrofons mit Röhrchen und Klammer Fotos: DF1EZ

Aussteigen unterbrochen wird, falls man einmal vergisst, das Mikrofon vom Sicherheitsgurt abzunehmen.

Im jetzigen wie im damaligen Fall ist ein zweipoliger Umschalter mit Nullstellung eingebaut. Bei der zuletzt beschriebenen Version dient eine Ebene zur Einschaltung der 9-V-Versorgung des Verstärkers, die andere als PTT oder zur Schaltung des Tonrufs. Bei der jetzigen Version entfällt die Abschaltung der Spannung, weil diese mit dem Ausschalten des Funkgeräts verschwindet.

H. Coenen, DF1EZ

heinz.coenen@gmx.de

Literatur

[1] Moltrecht, E., DJ4UF: Mobilfunk mit TalkSafe. FUNKAMATEUR 57 (2008) H. 5, S. 473

Bezugsquellenverzeichnis / Fachhändleranzeigen

ŀ	Händler							HII!	jebo	,,			
	Anschrift	Telefon / Fax	Homepage	E-Mail			hik Hi	enner					
ı					cant	er	verkst	ınkanı	peräte	ute	änger		q
ı					and	Großhänd	rice-w	teurfu	CB-Funkgerät	eleme	Weltempfänger Bausätze	kzeug	CACAC
					Lade	Grof	Ama	Ama	CB-I	Baue	Welt	Wer	Mac
Ī	Elektronik-Service Dathe, Gartenstraße 2 c, 04651 Bad Lausick	(03 43 45) 2 28 49 / 2 19 74	www.funktechnik-dathe.de	funktechnik.dathe@t-online.de	• •		• •	•	•	•	•		(
ı	KCT, Dietmar Lindner, Heilandsberg 4, 06667 Uichteritz	(0 34 43) 30 29 95 / 23 96 45	www.firma-kct.com	info@firma-kct.com	• •		• •	•	•	•	•		Ī
ŀ	Loescher-electronic, Hospitalweg 13, 08118 Hartenstein	(03 76 05) 55 80 / 51 39	www.loescher-electronic.de .sstv.de .funkgeschaeft.de	info@loescher-electronic.de	• •		• •	•	•	•	•	П	i
H	Schönherr electronic, Annaberger Straße 327, 09125 Chemnitz	(03 71) 5 38 44-94/-95 / -96	www.schoenherr-electronic.de	info@schoenherr-electronic.de	• •	•	• •	•	•	•	•	•	•
H	FUNKTECHNIK Häßler, Schachtstraße 1, 01728 Bannewitz	(03 51) 40 41 03-2 / 40 41 03-4	www.lokfunk.de	klaus@lokfunk.de	• •		• •	_	_	_	• •		i
ŀ	HMM SATSHOP BERLIN, Alt-Kaulsdorf 64, 12621 Berlin	(0 30) 56 59 94 91 / 56 59 94 92	www.hmm-satshop.de · www.satshop-berlin.de	willkommen@hmm-satshop.de	• •	\vdash					•	Н	•
ŀ	CeCon GmbH, Claire-Waldoff-Straße 1, 10117 Berlin	(0 30) 28 39 56-0 / 28 39 56-30	www.cecon.de	cecon@cecon.de	• •		•					Н	i
H	Sander electroniC, Postfach 350 564, 10214 Berlin	(0 30) 29 49 17 94 / 29 49 17 95	www.sander-electronic.de	info@sander-electronic.de	•	Н				•	•	H	•
H	SEGOR-electronics, Kaiserin-Augusta-Allee 94, 10589 Berlin	(0 30) 43 998 43 / 43 998 55	www.segor.de	sales@segor.de	• •	•				•		•	
H			-	-	• •		• •			_			
ŀ	Funktechnik Seipelt, Ulmenstraße 30a, 15366 Hönow	(0 33 42) 30 49 59 / 30 49 58	www.funktechnik-seipelt.de	info@funktechnik-seipelt.de		\vdash	_					H	
ŀ	MTC Meßtechnik Bernd Colberg, Str. d. Jugend 4–6, 15806 Zossen	(0 33 77) 30 23 31 / 30 27 21	<u> </u>	tv-colberg@t-online.de	• •		•			+		H	•
F	QRPproject H. Zenker, Molchstraße 15, 12524 Berlin	(0 30) 85 96 13 23 / 85 96 13 24	www.qrpproject.de	info@qrpproject.de	•	\vdash	•				•		
F	appello GmbH, Drosselweg 3, 21376 Salzhausen	(0 41 72) 97 91 61 / 97 91 62	www.appellofunk.de	info@appello.de	•	\vdash	•	+					
-	Radio Kölsch, Schanzenstraße 1, 20357 Hamburg	(0 40) 43 46 56 / 4 39 09 25	_	—	•		•						
	reichelt elektronik GmbH & Co. KG, Elektronikring 1, 26452 Sande	(0 44 22) 9 55-0 / 9 55-111	www.reichelt.de	info@reichelt.de	•					•	•	•	
L	HTB Elektronik, Alter Apeler Weg 5, 27619 Schiffdorf	(0 47 06) 70 44 / 70 49	www.htb-elektronik.com	htb@bremerhaven-net.de	•								
	Andy Fleischer, Paschenburgstraße 22, 28211 Bremen	(04 21) 35 30 60 / 37 27 14	www.andyquarz.de	quarze@andyquarz.de	•		•	•	•	•	•	•	
	Oppermann GbR, Postfach 44, 31593 Steyerberg	(0 57 64) 21 49 / 17 07	www.oppermann-electronic.de	oppermann-ele@t-online.de	•		•			•	•		
L	beam-Elektronik GmbH, Postfach 1148, 35001 Marburg	(0 64 21) 96 14-0 / 96 14-23	www.beam-shop.de	info@beam-shop.de	•	•	•				•		
j	Funktechnik Grenz, Lahnstraße 15A, 35091 Cölbe	(0 64 21) 87 11 95 / 87 11 96	www.Funktechnik-Grenz.de	funktechnik-grenz@t-online.de	• •	•	•	•	•	•			
į	Ingenieur-Büro FRIEDRICH, Am Schwarzen Rain 1, 36124 Eichenzell	(0 66 59) 91 94 44 / 91 94 45	www.ibfriedrich.com	CAE@aol.com	•							•	ĺ
	ICOM (Europe) GmbH, Himmelgeister Straße 100, 40225 Düsseldorf	(02 11) 34 60 47 / 33 36 39	www.icomeurope.com	info@icomeurope.com	•								ĺ
	höhne, Weg am Kötterberg 3, 44807 Bochum	(02 34) 59 60 26 / 59 41 02	—	hoehne@kamp.net	• •		•	•			•		
ĺ	Friedrich Kusch, Dorfstraße 63–65, 44143 Dortmund	(02 31) 25 72 41 / 25 23 99	www.KABEL-KUSCH.de	Kusch@Kabel-Kusch.de	•	•							
İ	Lükom Kommunik u. Funktechnik, Im Osterloh 7, 49196 Bad Laer	(0 54 24) 3 83 22 / 3 83 41	www.luekom.com	info@luekom.com	• •	•	•	•	•	•	•	•	
	TBF-Funktechnik, Forststraße 104, 47443 Moers	(0 28 41) 9 98 51 30	www.TBF-Funk.de	info@TBF-Funk.de	• •		•	•	•	•			
İ	Maas Elektronik, Heppendorfer Str. 22, 50189 Elsdorf-Berrendorf	(0 22 74) 93 87-0 / 93 87-31	www.maas-elektronik.com	info@maas-elektronik.com	• •	•	• •	•	•	•	•		
İ	Radio Map Service, von Ehrenberg-Straße 1, 54550 Daun/Eifel	(0 65 92) 36 64 / 1 02 45	_	traxel.dk5pz@web.de	•	•	•				•		
	SSB-Electronic GmbH, Handwerkerstraße 19, 58638 Iserlohn	(0 23 71) 95 90-0 / 95 90-20	www.ssb-electronic.de	vertrieb@ssb-electronic.de	•	•	• •	•		•	•		
	Andy's Funkladen, G. Zehner, Windecker Pfad 20, 61137 Schöneck	(0 61 87) 5699	www.andyfunk.de	info@andyfunk.de	• •		• •		•	•	• •		
	Kenwood Electronics GmbH, Rembrücker Straße 15, 63150 Heusenstamm	(0 61 04) 69 01-0 / 6 39 75	www.kenwood-electronics.de	info@maschlanka.de		•							ĺ
	Communic. Systems Rosenberg, Marienbader Str. 14 a, 61273 Wehrheim	(0 60 81) 5 93 93 / 98 02 71	www.gagacom.de - www.vectronics.de - www.palstar.de	gagacom@aol.com		•		•					
	SHF-Elektronik, Röntgenstraße 18, 64291 Darmstadt	(0 61 51) 1 36 86 60	www.shf-elektronik.de	contact@shf-elektronik.de	•	\vdash	• •			•	•		ĺ
	GiGA-Tech, Postfach 1160, 68536 Heddesheim	(0 62 03) 4 41 42 / 4 63 62	www.giga-tech.de	info@giga-tech.de	•		-	ľ		•			
	ROSENKRANZ-Elektronik GmbH, Groß-Gerauer Weg 55, 64295 Darmstadt	(0 62 03) 4 41 42 / 4 03 02 (0 61 51) 39 98-0 / 39 98-18	www.grga-tecii.ue www.rosenkranz-elektronik.de	rosenkranz@rosenkranz-elektronik.de	•			H		-			
					•		•				•		
	IngBüro Michels, Kolberger Straße 38, 26789 Leer	(04 91) 9 76 73 97	www.lng-Michels.de	Info@Ing-Michels.de									
	SYMEK GmbH, Johannes-Krämer-Straße 34, 70597 Stuttgart	(07 11) 76 78-923 / 76 78-924	www.symek.de	info@symek.de	•		• •	+					
	Hummelmasten, Industriestraße 14/1, 75417 Mühlacker	(0 70 41) 4 52 44 / 86 43 08	www.hummelmasten.de	info@hummelmasten.de	•		-	•	\vdash				ŀ
	WiMo Antennen u. Elektronik GmbH, Am Gäxwald 14, 76863 Herxheim	(0 72 76) 9 66 80 / 69 78	www.wimo.com	info@wimo.com	•	•	•	-		•	•		
	HD-Elektronik H. Delfs, Geißgräben 2, 74594 Kreßberg	(0 79 57) 87 87 / 87 88	www.hd-elektronik.de	info@hd-elektronik.de	• •	•	_	_	•	_	•		
	Radau Funktechnik, Im Silberbott 16, 79599 Wittlingen bei Lörrach	(0 76 21) 30 72 / 8 96 46	www.radaufunk.com	radau@radaufunk.com	• •		•	•	•	•	•		ł
	Pollin ELECTRONIC, Max-Pollin-Straße 1, 85104 Pförring	(0 84 03) 920-920 / 920-123	www.pollin.de	pollin@t-online.de	•	•				•	•	•	
	bogerfunk Funkanlagen GmbH, Grundesch 15, 88326 Aulendorf	(0 75 25) 4 51 / 91 15 26	www.boger.de oder www.aor.de	info@boger.de	• •	•	•	•			•		ļ
	Haro-electronic, Peter-Henlein-Straße 5, 89331 Burgau	(0 82 22) 4 10 05-0 / 4 10 05-56	www.haro-electronic.de	info@haro-electronic.de	• •	•	•	•	•	•	•		
	UKW-Berichte, Jahnstraße 7, 91083 Baiersdorf	(0 91 33) 77 98-0 / 77 98-33	www.ukw-berichte.de	info@ukwberichte.com	• •	•	•	•			•		
	Hans Entner Funkelektronik, Landshuter Straße 1, 94339 Leiblfing	(0 94 27) 90 20 86 / 90 20 87	—	Entner-DF9RJ@t-online.de	• •		•	•			•		
	Dieter Knauer, Funkelektronik, Birkach, Waldblick 28, 96158 Frensdorf	(0 95 02) 2 12 / 2 48	www.knauer-funk.de	Dieter_Knauer@t-online.de	• •		• •	•			•		İ
	KN-Electronic, Bahnhofstraße 12, 98724 Neuhaus/Rwg.	(0 36 79) 72 57 67 / 72 03 03	kn-electronic.de	KNEQRP@aol.com	•					•	•	•	t
	Point electronics, Stumpergasse 41-43, A-1060 Wien	(01) 5 97 08 80-0 / 5 97 08 80-40	www.point.at	mail@point.at	• •	•	• •	•			•		Ì
	Funktechnik Böck, Gumpendorfer Straße 95, A-1060 Wien	(01) 5 97 77 40-0 / 5 9777 40-12	www.funktechnik.at	aboeck@netway.at	• •		• •	-			•		l
	IGS ELECTRONIC GesmbH, Pfeifferstrasse 7, A-4040 Linz	(07 32) 73 31 28 / 73 60 40	www.igs-electronic.at	info@igs-electronic.at	• •		• •				• •		l
_	Rudi's Funkshop, Gollensdorferstraße 1, A-4300 St. Valentin	(043 74 35) 5 24 89-0 / -20	www.boenisch.at	boenisch@aon.at	•	Н	• •	-			•		ŀ
H	ALTREDA AG, Max-Högger-Str. 2, CH-8048 Zürich	(044) 4 32 09 00 / 4 32 09 04	www.altreda.ch	info@altreda.ch			+	F				H	
H	Deitron, HB9CWA, Hohlstrasse 612, CH-8048 Zürich	(044) 4 31 77 30 / 4 31 77 40						H					
H			www.goc.electropies.com										
ſ	GES-ELECTRONICS, a.s., Studentská 55 a, CZ-32300 Plzeň	(0 04 20) 37 73 73-111 / -999	www.ges-electronics.com - www.ges.cz	ges@ges.cz	•		-	4		•		•	

*) in Briefmarken

atalogpreis EUR • . . . • • • • • • . . . 1.50 1.50 • . 2 50 ORP-Rausätze • • • Elektronik-Versand . . • 2 50 1.50 • . • • • • • • • . 5 5 2,50 Acce 2 50 . gaga, Vectronics Vertretund Mastynrstufen Endstuf VHF/SHF-Bauteile Audio-Filter 2.50 2 2,502,50 . . . • • • • • . • 5 • • 2,50 1.50 • • • • • • • • • • • **4,60**

Fachhändler

Deutschland

www.DG0VE.de

UHF- und Mikrowellen-Baugruppen bis 10 (24) GHz Telefon (03578) 314731

Mikrofontechnik für Icom, Kenwood, Yaesu u.a. Tel. (03 43 27) 9 24 67 · www.dq1oqw.de Funktechnik Grundmann · DM2CM

www.mwf-service.com

MWF-Service Hanke • 04229 Leipzig • Hirzelstraße 10–12 Funk-Fachgeschäft mit 48 Stunden-Servicewerkstatt Tel.: 03 41-42 52 038 • Fax: 03 41-42 49 203 • info@mwf-service.com

VOGTLANDFUNK

Amateurfunk · CB-Funk · Betriebsfunk · Scanner · Zubehör Heppeplatz 8 · 08606 Oelsnitz Tel./Fax: (037421) 23162, vogtlandfunk@t-online.de

Gitterparabolspiegel, Strahler, Quad-Antennen www.funktechnik-liebal.de

QUARZE FÜR 15,75
Sonderanfertigung (HC18/25/6) zuzüglich einmalig 6,– für Porto u. Bearbeitung
Lieferzeit 3 Wochen. Wir liefern auch Eisenpulver- u. FT-Ringkerne ab Lager!

Fleischer

Paschenburgstr. 22 · 28211 Bremen · Tel. (04 21) 35 30 60 · Fax 2443131

DELTRON Electronic GmbH

S. Goetz · DC4BA · Sykerstraße 17 · 27751 Delmenhorst Tel. 04221/14341 · Fax 120344 · E-Mail deltron@gmx.de

BÜCHER für HF-Technik, Amateurfunk & Elektronik www.beam-shop.de

Dieter Söhlke

T. 05733/8144 Mindener Str. 67 32602 Vlotho

WIENBRÜGGE TeleFunk GÖTTINGEN FACHBETRIEB FÜR FUNK & TELEKOMMUNIKATION
Reinhäuser Landstraße 131 - D-37083 Göttingen
Tel. (0551) 384818-0 · Fax (0551) 384818-123
www.wienbruegge.de · mail@wienbruegge.de

Brigitte DK9AG Reinhard DK7AT

ALINCO bogerfunk AOR Michael DF8AH

Alle Lextronix-Weltempfänger lieferbar! Charly H. Hardt

Alle DRM-Radios lieferbar! Tel. 0 21 91 / 8 05 98, Fax 0 21 91 / 8 35 57 www.charly-hardt.de

> Forststraße 104, 47443 Moers Tel. (0 28 41) 9 98 51 30, www.TBF-Funk.de

TBF Funktechnik Thomas Friedrich, DF2JQ Amateur-, CB-Funk und Sat-Anlagen. Geräte, Zubehör, Reparatur und Montage. ALINCO, ICOM, KENWOOD, YAESU, DIAMOND etc.

D. Lübbert Im Osterloh 7

49196 Rad Laer Tel 05424/38322 Fax 05424/38341

www.luekom.com

DC8BJ

info@luekom.com

Technologiepark Bergisch Gladbach · Fr.-Ebert-Str. • 51429 Bergisch Gladbach Tel. 02204/584751 · Fax 584767 · creim@reimesch.de · www.reimesch.a

www.anttronic.de • Leiterplatten zu TOP-Preisen! ab 1 Stck

- Entwicklung
- · Layouterstellung · Bestückung
- Prototypenbau

Frick Gerätebau GmbH Walinusstraße 27 • 63500 Seligenstadt Tel.: 06182-3003, Fax: 06182-26633 E-Mail: frick.maste@t-online.de www.frick-teleskopmaste.de

Andy's Funkladen

Gernot Zehner, Windecker Pfad 20, 61137 Schöneck Tel. +49 (0) 6187/5699 • www.andyfunk.de

Hummelmasten Industriestraße 14/ 75417 Mühlacker Tel. (07041) 45 244 · Fax 864308

HD-ELEKTRONIK · 49 Jahre im Dienst des Amateurfunks Amateurfunkzentrum Hohenlohe-Franken Geissgräben 2 · 74594 Kressberg 3 (Marktlustenau) Telefon (07957) 8787 · Fax 8788 · www.e-ham.de · info@hd-elektronik.de Telefon-Kontakt nur Mo/Di/Do/Fr von 11-13 und 17-19 Uhr möglich Funkgeräte und Empfänger von Alinco, Icom, Kenwood, Yaesu u.v.a.

Deutschland

FTV – Funktechnik

Untersbergstraße 2 · 83404 Ainring-Mitterfelden Tel. (08654) 479747 · Fax (08654) 479748 Wir führen: Yaesu, Kenwood, Icom, Alinco, Stabo, Albrecht usw. Geschäftszeiten: Di-Fr 9-12 und 14-18, Sa 9-12 Uhr www.ftv-austermaver.de

Rößle Elektronik

86637 Wertingen Dr. Bihler-Weg 3

SCHÜLEIN ELECTRONIC Tel: 09195-99 33 86 D-91325 Heppstädt 31

Fax: 09195-99 33 41 info@schuelein.com

www.schuelein.com

antennas & more ...
AFLI-Antennen (KW, 6 m, VHF, UHF), CB-Funk-Antennen (auch Richtantennen),
Netztelle, Funkgeräte, Zubehör, Kabel, Stecker, Weltkarten, Funker-Tassen, Quads.
ECC-Antennen, Konni-Antennen, GB-Antennes, HB9CVs, Wilson, Solarcon etc.
Preisliste kostenlos anfordern! We also speak English.

www.steckmast.de

Jürgen Simon · dh5ab@tecadi.de

RF Engineering · Antenna Systems

FERNABGESTIMMTER DIPOL YMMETRISCH GESPEIST www.h2-rf-engineering.de

Ihre Anzeige

drucken wir über 40 000-mal. Rufen Sie uns bitte unter (030) 4466 9460 an.

Österreich

Rudi's Funkshop OE3RBP/OE3YBC
Verkauf – Reparatur – Service von Funkzubehör aller Art • Rudolf Bönisch
A - 4300 ST. VALENTIN, Gollensdorferstr. 1 • Hotline: +43(0)7435 /52489-0
FAX. DW 20 • E-Mail-Adresse: boenisch@aon.at / www.boenisch.at

IGS ELECTRONIC

Ing. G. Schmidbauer (OE5DI) GesmbH 4040 Linz/Donau, Pfeifferstrasse 7 tel. 0732 733128 fax 0732 736040 email: info@igs-electronic.at www. igs-electronic.at

➤ Die ganze Amateurfunk Elektronik ◀

Point electronics

Das Funk - Fachgeschäft

A- 1060 Wien, Stumpergasse 43 Tel. +43 1 597 08 80 Home Page: www.point.at E-Mail: mail@point.at

Schweiz

GMW-FUNKTECHNIK

Landstraße 16 · Postfach · CH-5430 WETTINGEN · Tel. +41 056 426 23 24 **GROSSE AUSWAHL RUND UM FUNK!**

Amateur-, Berufs-, Marine-, Hobby- und Flugfunk KW-, VHF-, UHF- und GPS-Empfänger YAESU-VERTEX, ICOM, KENWOOD, JRC, AOR usw.

Tschechien

▶ AMATEURFUNK ▶ BAUELEMENTE

☎(00 420) 37 73 73 111 ■ ges@ges.cz

🚱 www.7388.eu

Abkürzungen in Kleinanzeigen:

VB/VHB = Verhandlungsbasis VS = Verhandlungssache NN = Nachnahme NP = Neupreis VP = Verkaufspreis FP = Festpreis SAH = Selbstabholer

KLEIN

Funk & Amateurfunk

Gebrauchtneräte An- und Verkauf mit Übergangsgarantie Haro-electronic, Tel. (0 82 22) 41005-0

> www.avr-kurse.de **AVR-Kurse & Workshops**

Nachlass der Fa. Haag-Elektronik zu verkaufen. Funkgeräte usw. Tel. (08821) 61172, Handy (0176)

Schaltnetzteile für Geräteeinhau HF-fest zuverlässig und robust, 900 g, 198 x 99 x 50 mm, INPUT 85–265 V, OUT 12 V 12 A oder 24 V 9 A. www.hed-tafelmeyer.de, Tel. (09127) 594866 (gewerblich)

Standard C520 C528 C620 C628 Reparaturkit. Ersatzteile, Ankauf def. Geräte. www.hed-tafel meyer.de, Tel. (09127) 594866 (gewerblich)

Abspannseile für Portabel- und Stationsantennen, Kevlar und Dyneema, in allen Stärken und Längen. Leguano ltd. www.tauwerk-seile.eu (gewerblich)

KW-TRX Yaesu FT-900, 100 W, Collins-Filter, FT-450AT, 2-m-Modul für Yaesu FT-767. VHS DH9AB, Tel. (034297) 48733

Rollspule 4 $\mu H,\ 20\ \mu H,\ 70\ \mu H;$ Kugelvariometer 48 µH, 99 µH, mit Motor 23 µH; Vakuum-Koaxrelais für KW und UKW. Bilder unter www. dl9usa.de. Tel. (03563) 97228

CREATE -Rotoren

KC 5-1	Rotor mit var. Geschwindigkeit, onne Preset # 01046	€ 499,00
RC 5-1 DC	Rotor für 12 VDC-Betrieb # 01037	€ 603,00
RC 5-3	Rotor mit Preset und var. Geschwindigkeit # 01011	€ 677,00
RC 5A-3	Leistungsrotor m. Preset / var. Geschw # 01012	€ 976,00
RC 5A-3-P	wie RC 5A-3 mit Interface-Buchse# 01013	€ 1012,00
RC 5B-3	Hochleistungsrotor m. Preset / var. Geschw # 01009	€ 1465,00
	Elevationsrotor # 01042	
ERC 5A-P	Hochleistungselevationsrotor # 01039	€ 1437,00
AER-5	Sat-Rotor-Kombination# 01084	€ 1280,00

Mast-Vorverstärker

im wetterfesten Mastgehäuse; 12 V DC: mit HF-Vox

SP 2000 2 m; 20 dB; f = 0,8 # S1049 € 225,00 SP 7000

23 cm; 20 dB; f = 0,9 # S1022 € 328,00 13 cm; 24 dB; f = 0,9 # S1039 € 327,00

SP 6 6 m; 20 dB; f = 0,9 # S1035 € 225,00 DRA 270

2 m / 70 cm; 20 dB; f = 1,3-1,5 # S1032 € 220,00 NEU: DCW 2004

Fernspeiseweiche und Ablaufsteuerung für 6 m. 2 m und 70 cm €100.50

Koax- NEI **Handschalter**

Mini-Handschalter: € 95,00 **1** ho 322

BNC-Wi. ...€ 108.00 ho 340 N-Bu. . €100.00

Präzisions-Handschalter hoscha 605 PL-Bu .. €102,00 hoscha 606 606 € 129,00 PL-Wi

hoscha 2005 N-Bu hoscha 2006

€ 143,00 N-Wi € 204 00

KOAXKABEL-SERVICE

0,66

ASLOG 2

Breitband Log.-Per.-Antenne 890-2200 MHz; 10-12 dB; 0,6 m; 10 m H 155 mit FME # 90200 € 64,00

€ 0,74 0,69

F9FT-T0NNA-Antennen

2 m, 4 El.	8,9 dBi/0,93 m	€ 62,00
2 m, 9 El.	13,1 dBi/3,47 m	€ 74,70
2 m, 9 El. port.	13,1 dBi/3,47 m	€ 73,60
2 m, 11 El.	14,2 dBi/4,56 m	€ 117,40
2 m, 17 El.	15,3 dBi/6,60 m	€ 128,00
2 m, 2x4	8,9 dBi/1,03 m	€ 86,80
2 m, 2x9	13,0 dBi/3,57 m	€ 118,50
2 m, 2x11	14,0 dBi/4,62 m	€ 149,10
70 cm, 9 El.	11,9 dBi/1,24 m	€ 55,50
70 cm, 19 El.	16,2 dBi/2,32 m	€ 74,20
70 cm, 21 ElL	18,2 dBi/4,60 m	€ 93,90
70 cm, 21 ElH	18,2 dBi/4,60 m	€ 93,90
70 cm, 2x19	16,0 dBi/3,25 m	€ 113,50
23 cm, 23 El.	18,0 dBi/1,80 m	€ 64,10
23 cm, 35 El.	20,0 dBi/3,07 m	€ 81,70
23 cm, 55 El.	21,5 dBi/4,64 m	€ 112,80
2,3 GHz, 25 EI.	18,3 dBi/1,45 m	€ 87,50
2,4 GHz, 25 EI.	18,3 dBi/1,45 m	€ 87,50
6 m, 5 El.	10,0 dBi/3,45 m	€ 120,00

M²-∆ntennen **S**

IVI -M	ntennen/		570
aus den U	SA – solide!	1	
2M9	12,0 dBd; 4,5 m	€	198,00
2M12	13,0 dBd; 5,9 m	€	282,00
2M5WL	14,8 dBd; 10 m	€	356,00
2M18XXX	17,0 dBd; 11 m	€	392,00
2MCP14	10,3 dBd*; 3,2 m	€	285,00
2MCP22	12,5 dBd*; 5,7 m	€	394,00
2MXP20	13,3 dBd; 6,6 m	€	349,00
2MXP28	15,1 dBd; 10,5 m	€	498,00
420-14-18	14,5 dBd; 3,5 m	€	212,00
440-21	15,9 dBd; 4,4 m	€	248,00
432-9WL	17,3 dBd; 6,4 m	€	298,00
432-13WL	18,6 dBd; 9,4 m	€	392,00
436CP30	14,5 dBd*; 3 m	€	388,00
436CP42	16,8 dBd*; 5,7 m	€	445,00
2M5-440XP	9/12 dBd; 1,5 m		290,00
23CM35	18,4 dBd; 3 m		268,00
6M3	6,4 dB; 2 m	€	208,00
6M5X	9,4 dB; 5,5 m		352,00
* inkl. Phase	nleitung für Zirkularpol	arisa	ation

(•

mit geringer

Windlas	t 🦠
FX 205V	7,6 dBd/1,2 m € 93,00
FX 210	9,1 dBd/2,2 m€ 113,00
FX 213	10,2 dBd/2,8 m€ 141,00
FX 217	10,6 dBd/3,5 m€ 162,00
FX 224	12,4 dBd/4,9 m€ 186,00
FX 7015V	10,2 dBd/1,2 m€ 108,00
FX 7033	13,2 dBd/2,4 m€ 111,00
FX 7044	14,4 dBd/3,1 m€ 141,00
FX 7056	15,2 dBd/3,9 m€ 165,00
FX 7073	15,8 dBd/5,1 m€ 182,00
FX 2304V	14,2 dBd/1,2 m€ 134,00
FX 2309	16,0 dBd/4,0 m€ 169,00
FX 2317	18,5 dBd/4,0 m€ 201,00
FX 1308V	16,0 dBd/1,2 m€ 167,00
FX 1316	18,3 dBd/2,0 m€ 200,00
FX 1331	20,5 dBd/4,0 m€ 256,00

Anpass-Töpfe

zum impedanzrichtigen Zusammenschalten

AT2/2m AT4/2m	2 x 2-m-Antenne, N-Buchse		€ 62,00 € 87,00
AT2/70	2 x 70-cm-Antenne, N-Buchse	# 00308	€ 61,00
AT4/70	4 x 70-cm-Antenne, N-Buchse	# 00309	€ 85,00
AT2/23	2 x 23-cm-Antenne, N-Buchse	# 00310	€ 61,00
AT4/23	4 x 23-cm-Antenne, N-Buchse	# 00311	€ 85,00
Versionen	auch für 2,4 GHz oder UMTS lieferbar.		

Glasfaser-Rohre

Farbe weiß, Längen bis 6 m Ø 30 mm/3,2 mm Wandst. pro m € 12,10 Ø 40 mm/4 mm Wandst. pro m € 16,85 Ø 50 mm/4,5 mm Wandst. pro m € 24,65

NIRO-Kreuzklemme

CP 1/63 # 02062 \emptyset = ie 45-63 mm: 1.9 kg alle Teile Edelstahl, rostfrei, V2A statt € 50.30

... jetzt € 39.80

Fachversand für Funkzubehör Jahnstraße 7 · D-91083 Baiersdorf Telefon (0 91 33) 77 98-0, Fax 77 98-33 E-Mail: info@ukwberichte.com

Outback: Mobilantennen

für KW/2 m/70 cm Ni

Zwei Modelle

Outback 2000: 9-Band-Ant. f. alle KW-Bänder von 80-6 m inkl. WARC! Outback 1899: nur 80/40/20/15/10 m, lässt sich zusätzlich aber auch auf 2 m und 70 cm abstimmen.

Der Bandwechsel wird über eine umsteckbare "Wanderleitung" gelöst, die Feinabstimmung wird über die teleskopierbare Spitze durchgeführt, Gegengewicht (Auto) erforderlich.

Gewicht	530 g	120 W PEP 530 g PL-Stecker
-	Outback 2000	Outback 1899

NEU Kurze Multiband-Groundplanes für alle KW-Bänder

Gesamtlänge ca. 3 m (MV-10: 4.5 m) Transportlänge nui ca. 1 m, in 5 Min. aufgebaut, ideal für Portabelanwendungen. Belastbarkeit 200 W. Anschluss PL-Ruchse Ein Gegengewicht (Radials oder eine gute Erde) wird benötigt

MV5+3: 6/10/12/15/17/20/30/40 m	139,00
MV6+3: 6/10/12/15/17/20/30/40/80 m	175,00
MV-10: 6/10/12/15/17/20/30/40/80/160 m	220,00

Automatiktuner Z-817

Perfekter Automatik-Tuner für Yaesu FT-817 und andere QRP-Geräte Abstimmung über einen Tastendruck der Tuner

programmiert den FT-817 auf PKT. sendet stimmt ab, schaltet zurück in den vorigen Mode. Anschluss via CAT-Kabel (durchgeschleift) und Koax; max. 2000 Speicher, batteriebetrieben (4x AA-Zelle, nicht mitgeliefert) ca. 12 Monate Betriebsdauer; 0,1–20 W SSB/CW auf 160–6 m, auch für andere QRP-Geräte geeignet. Impedanzbereich 6 his 600 Q 300 g ohne Batterien, ca 120x34x130 mm klein, PL-Buchsen, Anschlusskabel für FT-817 im Lieferumfang . 155.00

NEU B-250 Bluetooth-Headset

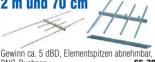
Bietet beste Sprachqualität auch in lauter Umgebung; professionelles Mikrofon mit Geräuschunterdrückung (Fahrgeräusche, Wind usw.); optimale Positionierung durch flexiblen "Schwanenhals"; einstellbarer Halter und gepolsterte Kopfhörer

muschel sorgen für hohen Tragekomfort u. sicheren Sitz, auch bei längerem

Gebrauch. Kann mit jedem Talksafe-Gerät, aber auch allen anderen Bluetooth-

NEU CAT-MATE

Elektronischer "CAT-Port-Verteiler" für FT-817/857/897


Ein MUSS, wenn mehr als ein Zubehörteil an die CAT-Buchse angeschlossen werden soll

z. B. Logprogramm und Antennencontroller oder externe Tastatur. CAT-MATE stellt zwei CAT-Buchsen zur Verfügung und empfängt Befehle von beiden CAT-Eingängen, die Funkgeräteantwort wird automatisch weitergeleitet. Aktivitätsanzeige durch LED. RS232-CAT-Interface (ersetzt CT-62) eingebaut, zum PC wird nur ein normales Sub-D-Kabel benötigt. CAT-MATE benötigt 65,00 keine eigene Stromversorgung.

WiMo Million III

99.00

Duoband HB9CV für 2 m und 70 cm

66.70 Standardausführung als Monoband:

2-m-Version, 5-teilig, PL-Buchse	44,60
70-cm-Version, BNC-Buchse	34.50
23-cm-Version, BNC-Stecker	
	,

NEU Ladder Loc

Mittenisolator für Dipole, die mit 450-Ω-Hühnerleiter symmetrisch gespeist werden. Die Žugentlastung der Speiseleitung erfölgt nicht über die Drähte selbst, sondern formschlüssig über die rechteckigen Ausbrüche im Steg. Die Hühnerleiter wird dazu einfach in LADDER-LOC eingelegt der Deckel aufgesetzt und mit den Polyamid Schrauben verschlossen

DV-DONGLE

D-STAR mit dem PC

Auch ohne Icom-TRX in D-STAR QRV: DV-Dongle an den USB-Port des Rechners (USB 2.0, ab 2 GHZ, ab 512 MB RAM) anschließen und QRV, mit dem PC-Headset weltweit mithören und mit,,funken", Internetverbindung nötig. Inkl. Software für Windows XP/Vista, MAC OS X Leopard und diverse

219,00

Steps Mehrbandbeams

Frei abstimmbar 40 bis 6 m oder 20 bis 6 m, stabile Beryllium-Bänder werden über Schrittmotoren in Glasfiberrohren

und Verticals

Mikrofon-Modifikation

Modifikation zur Klangverbesse-

rung des HM-151, neue Elektret-

netzwerks und des Gehäuses

kapsel inkl. Änderung des Anpass-

kräftige klare Stimmwiedergabe in

SSB. FM und AM. Umbau kom-

plett (Originalmikro einschicken!)

neues, fertig umgebautes HM-151:

ein- und ausgefahren, keine Traps volle Bandbreite, optimale Abstimmung, bester Wirkungsgrad, CAT-Schnittstelle für Steuergerät optional erhältlich.

Band	Boom	Preis
2 Ele 20-6 m	1,44 m	1255,00
3 Ele 20–6 m	4,87 m	1756,00
4 Ele 20-6 m	9,75 m	2643,00
4 Ele 40–6 m	10,46 m	5549,00
Vertical klein 20-6	m 5,5 m	749,00
Vertical groß 40-6	m 9,8 m	878,00

IC-7000

Seilschleuder

Hochwertige Schleuder zum Aufhängen von

Drahtantennen. das Zugseil wird über Bäume Büsche usw. geschossen (max. Kletterorgien

mehr, kein Pfeil und Bogen, kein Helfer nötig.

Lieferumfang:

Schleuder mit 100 m Angelschnur, Haspel mit 150 m Nylonseil (75 kg Bruchlast). 7 Ersatzgewichte mit Schnellverschluss

und ein Satz Gummi-

bänder für die Schleuder

129,00

Magnetische Antennen

Jetzt auch mit automatischem Antennentuner lieferbar! Eingebauter Antennentuner Frequenz eintippen, kurz warten, sendebereit!

Kein Probieren, keine Notizzettel, kein umständliches Suchen mit dem SWR-Meter Anzeige von Frequenz und SWR im LCD des Steuergeräts, Bereitschaftsanzeige durch LEDs.

ı		
ı	Baby-Loop, 6,6–29,5 MHz,	
ı	1 m Durchmesser, 12 kg	618,00
	Midi-Loop, 3,5–14,5 MHz,	
ı	2 m Durchmesser, 25 kg	760,00
ı	Manueller Controller	255,00
	Automatischer Controller	
	Drehständer für Baby-Loop und G-250	

SNA2550: Network Analyzer bis 2,5 GHz

45.00

Skalarer Network Analyzer für den 2.5 GHz. "Black hox"-Prinzip

Transmission und Reflexionsmessung, Kommunikation über USB 2.0, ideal für mobilen Einsatz, Fieldday etc., Ausgangspegel einstellbar

TalkSafe

Bluetooth-Freisprecheinrichtung für Mobilfunkgeräte

Kein Verheddern des Mikrofonkabels oder Suchen des Mikrofons, kein Jonalieren mit Mikro, Lenkrad. Blinker, Schalthebel. Mehr Komfort und

Mehr Infos auf

www.wimo.com

Sicherheit beim Funken im Mobil. Drahtlose Lösung für Auto und 10 m Umkreis, ideal auch für Motorradfahrer,

TalkSafe wird ans Funkgerät angeschlossen (Mikrofonbuchse, Lautsprecherbuchse), als Headset dient ein handelsübliches Bluetooth-Headset (nicht im Lieferumfang). Externe PTT möglich.

Vertrauliche Kommunikation möglich, da der Gerätelautsprecher aus ist. Lauthören per Schalter jedoch möglich, Zusatzlautsprecher nötig. TalkSafe wird mit dem Headset gepaart.

TalkSafe 159.00

Anschlusskabel offen oder für die gängigen Kenwood/Icom/Yaesu-Geräte 14,50

Baluns für Drahtantennen

Absolut wetterfest vergossen, ab 200 W mit zusätzlichen Ösen zur Zugentlastung der Antennendrähte. Edelstahl-Schraubanschlüsse, Anschlussbuchse SO-239 mit Wetterschutzkragen. Leistungsangaben für SSB/CW.

120 W 200 W 1000 W 36,20 36,20 46,70 52,30 36,20 36,20 36.20 36.20 52.30 1.6 36.20 36,20 52.30

Mantelwellensperre, 2x PL-Buchse: 200 W 41,60 1 kW

Ezitune

Testbericht: www.wimo.com

129.00

zu senden, genauer als jedes SWR-Meter, wird in Antennenleitung eingeschleift, eingebaute HF-Vox

Wunderding zum Abstimmen von KW-Antennen ohne

max. 200 W 125,70

Wetterstation WX-2008

Preisgünstige Wetterstation mit beleuchtetem Touchscreen und Funkanbindung. Gemessen und angezeigt werden Niederschlag, Windrichtung, Windgeschwindigkeit, Temperatur, Luftdruck, aktuelle und gemittelte Werte umschaltbar, dank PC-Software (Win-

Akkus für Handfunkgeräte

Technik Spannung/Kapazität Preis TH-D7/TH-G71 NiMH 38 NN TH-D7/TH-G71 29.80 TH-22/79 46,20 51,30 TH-22/79 TH-F7E TH-28/48/78 FT-50 33.90 FT-23/73/470 45,10 7,2 V/1500 mAh 7,2 V/1000 mAh FT-23/73/470_ NiCd 39.95 FT-51 NiCd 9,6 V/600 mAh 37,40 9,6 V/600 mAn 3,7 V/1070 mAh 7,4 V/1400 mAh 7,4 V/1300 mAh 3,7 V/1800 mAh 9,6 V/750 mAh VX-2E 28,70 52.30 VX-5/VX-7 48,00 32,50 IC-E90/91 IC-E7 IC-T81/T8 NiMH IC-W32 9.6 V/800 mAh 35.90

Klappferrit für Koaxkabel

Diverse Klappkerne für Koaxkabel ideal gegen Mantelwellen, vaga-bundierende HF usw. Auch zur Entstörung von PC (Tastatur) Schaltnetzteilen Audiokabelr

Lautsprechern usw.	
bis 3,8 mm 3,00	bis 8,9 mm 6,00
bis 5,4 mm 3,80	bis 11,7 mm 6,40
bis 6,1 mm 4,20	bis 13 mm 7,00

WiMo Antennen und Elektronik GmbH

Am Gäxwald 14 · 76863 Herxheim Telefon (07276) 9 66 80 · Fax 96 68 11 info@wimo.com · www.wimo.com Irrtümer und Änderungen vorbehalten, Barpreise inkl. MwSt., zuzüglich Versandkosten

ROJENKRANZ

ONLINE-Auktion vom 9. Februar 2009 bis zum 13. Februar 2009

Für Funkamateure und Bastler.

Wir räumen unser Lager! Alle älteren Geräte müssen raus! Versteigerung von ungeprüften Geräten und Ersatzteilträgern.

Kein Mindestpreis! Viele Auktionsangebote ab 1 €!

Alle versteigerten Positionen ohne Garantie. Zu dem Versteigerungspreis kommen noch die MWST und Versand-/Bearbeitungskosten.

Groß-Gerauer Weg 55 64285 Darmstadt www.rkeauctionsales.com info@rkeauctionsales.com Telefon +49 (0) 61 51 39 98-0 Telefax +49 (0) 61 51 39 98-18

KLEIN

Funk & Amateurfunk

DIF IDEAL EN SPREIZER FÜR 2- ODER 4-DRAHT-SPEISELEITUNGEN, 50 BIS 200 mm LÄNGE! BEI: www.hfparts.com, TEL. 09683/923020 UND AUCH 09683/454. A. SCHMAHL, DL6SX

Röhren: GI6B. GI7B. GI7BT. GI23B. GU50: Liste bitte per E-Mail. Fassungen für GU43B, GU50, GU84B, Septar, Oktal, Loktal, Noval und Mini. Bilder unter www.dl9usa.de. Tel. (03563) 97228

PA-HV-Netzteil-Module, Ringkerntrafos, preiswert, kompakt, leicht, vielseitig, modern, spannungsstabil, für Röhren GU74B, Gi7B, GS 35B, z.B. 3 kV/1 A/DC, Gleichrichterteil ED22, gibts ab Lager bei www.eurofrequence.de, Dierking NF/HF-Technik, Tel. (06701) 200920

KW-TRX Kenwood TS-850 S, Topzustand, eingeb. Antennentuner, 500-Hz-CW-Filter, wenig benutzt, NR, SP31 Lautspr., MC 60 Mikro, Interface IF 232C, VB 750,-. Tel./Fax (04551)7182

Kenwood TS-50, mit 500-Hz-CW-Filter, Originalmikrofon und Originalunterlagen, nur stationär genutzt, voll funktionsfähig, sehr guter Zustand, VHB 500,-. (0951) 420792, dj5ne@darc.de

Netzwerkanalysator HP8755A mit Grundgerät HP182T und Detektoren HP11664A (Teile evtl. auch einzeln abzugeben). Anritsu Powermeter ML4803A mit Powersensor MA4703A (26,5 GHz) und kpl. Manual. Suhner 6-dB-Powerdivider, SMA-Buchsen, spezifiziert bis 12,4 GHz, einsetzbar bis ca. 18 GHz. Alle Geräte sind im TOP-Zustand, Preise VHB, Tel. (08092) 84084

IC-706MK2G mit Z-100, techn. und opt UFB, FP 750,-. Tel. (09524) 301934, dg8ncy@darc.de

Yaesu FT-1000MP, AT, 100 W, SSB-Filter, dt. Handbuch, topgepflegt, ext. Lautsprecher SP-8, für 1190,-. Tel. (04202) 62603, (0175) 5873487

KW-TRX FT-707S (10 W) mit Zus.-VF0 FV707DM, 400,—; UKW-TRX FT-480R, 350,—; UKW-TRX TR-2200G, 30,-. Tel. (05849) 971282

Drake Line R-4 B/T-4XB/MS-4, funktionierend, inkl. Unterlagen in dt. und engl. VP 380,-Harald.Kinting@t-online.de

Sommerkamp Line FL200B/FR100B, Oldtimer aus den 60er Jahren, unverbastelt, mit original Mikrofon und Handbüchern inkl. dt. Übersetzung, VHB 400,-. hans@dd7mh.de

FT-900AT, wie neu, mit Manual, Mikrofon und Netzkahel 30 und 20 m keine Funktion 650 -Tel. (0431) 36896. dl2ow@amx.de

TS-950SDX, Spitzen-Transvceiver, 150 W, mit viel Zubehör und 10 Tagen Übernahme-Garantie, VHB nur 2400,-. Selbstabholer bevorzugt (100 km westl. M). Tel. (08263) 960280, àb@publicsoft.de

MFJ-9420: SSB und CW auf 20 m. 180.-. Tel. (0209) 370247, art-gran@gelsennet.de

Drake TR-7/PS-7, beide in außergewöhnlich gutem Zustand, 690,-; Icom-KW-TRX IC-720F, mit Netzteil IC-PS15, 380,-. Tel. (05723) 1292, b-arnold@t-online.de

Komplette Funkanlage: Yaesu FT-100 mit OVP OMike, Handbuch, Stromkabel, 1:9-Balun mit 20 m Antennendraht, Welz AC-38M Antennentuner 200 W, alles technisch und optisch o.k. VB 570,-. DJ0DJ, Tel. (0231) 7993471

Aus gesundheitlichen Gründen muss ich leider meine Sammlung von Funk-Lkws und Geräten, die sich allesamt in bestem Sammlerzustand befinden, auflösen: 1. SIL131 russischer Funk-Lkw km-Stand 7200 mit kompl. R140 Funkanlage, absoluter Original-Bestzustand, k. Rost, mit Oldtimerzuiassung Ersatzteilen, Haftpflicht, 190,–; **2.** GAZ 66 russischer Funk-Lkw km-Stand 2200 mit kompl. R142 Funkanlage, absoluter Original-Bestzustand, k. Rost mit allen Ersatzteilen (u.a. Nachtsichtgerät) Oldtimerzulassung; 3. Geräte: Real-Time Spectrascop-Analyzer Modell S0330A Herst: Spectral-Dynamics-Corporation, mit Unterlagen. quenz-Hubmesser, Type FMV BN4620, 20–300 MHz, Rohde&Schwarz. Mitlaufgenerator zu FNA und FTA, Rohde & Schwarz-Frequenzähler Digitalanzeige 20 Hz-12,4 GHz, Elettronica Roma, russischer Frequenzzähler, R34-51 Nixi! 0,12-4,5 GHz, deutsche Beschriftung, 3 Ordner Unterlagen Kassettengerät RFT TG 7127, Stasi-Original-Uhr, mit Funkempfänger. RFT-Uhr DZA 86 (2 Laufwerke), Revox B77 Stereo, 7 orig. Spulen; 4. Empfänger: Siemens Regenbogen E 566, Siemens E 401, mit Telegrafie-Demodulator, Drake R4C, mit Röhrenmischer, EKD 514, EKD 300/100-EZ100, hell und grün, ML(Mona Lisa) REV 251 TD, ML VREV-T, ML UREV, ML Panorama-Sichtgerät PR 351. ML Doppelkassettendeck M7M-K, Bundeswehr-Empfänger EM25, EKV12, Racal 17L; 5.Transceiver: Trio TS 510, mit 2. VFO, Sommerkamp FT 401, 200 W, HW12. 2 m Allmode 2G70 B 20 W. 2G70 C 50 W. SEG100 kompl. mit MG 80 mit Netzteil und TÜ100 (Rarität) original Dummy-Load (30 dB Ausgang), original Lüfter, AAG. Mit Bedienteil, SEG15 mit allem Zubehör, Bundeswehr SEM 25 und 35, Icom 202 u. 402; **6. Antennen:** Roh-de&Schwarz AK 853, 3–30 MHz, 10–13 dB, 20 KW Eingangsleistung, Gewicht 900 kg, zerlegt mit Drehrotor (Gewicht 120 kg), mit Aufbauanleitung, NP 150 TDM; diverse Drehrotoren mit Steuergerät für ca. 1000 kg, legendäre Schildkrötenantenne mit und ohne Bediengerät. Pneumatikmasten 2,5/10 m, Kurbelmasten 19 m, Kurbelmast 22 m, Cush-Craft 5-Element-Beam mit 40 m, nur 2 Jahre auf Mast, 2-Element-3-Band-Quad v.d.Ley mit Zuleitung, HyGain 20-m-5-Element-Beam noch originalverpackt, 40-m-Beam HyGain noch originalverpackt, 2-m-24-Element M2 (UKW-Berichte 16 m lang, 2 Stück, mit Koppelglied), dto. für 70 cm, 9,5 m lang, beides noch originalverpackt; 7. KSG1300 mit kompl. Zubehör: Ersatzbaugruppen, Platinen, Netzteile, Endstufen, Anschaltgeräte, Peripheriegeräte: KBS, KBM, KNM, KBZ, KBT, KAM, Bei Interesse bitte E-Mail mit Preisvorstellung an: reinhard-sackmann@t-online.de

600-W-KW-PA Ameritron ALS-600 160-10 m incl. WARC, mit schaltbaren Bandpässen, techn. wie optisch UFB, org. Zustand, mit org. Unterlagen, 1100,-. Gern SAH. JO32JA. Tel. (02564) 968511, DK8DX@t-online.de

Mit Schwung aus dem Sonnenfleckenmini

ALPIN 200 Neue 2-kW-Röhrenendstufe

Highlights:

- mikroprozessorgesteuert (Überwachung aller wichtigen Betriebsdaten, Schutzsystem zur Vermeidung von Schäden, Abstimmhilfe)
- qualitativ hochwertige Komponenten: Lüfter von Pabst. Vakuum-Relais von Gigavac, 2,5-kVA-Hochspannungs-Transformator
- 2 umschaltbare Antennenanschlüsse
- statt 1 nun 2 Röhren für deutlich mehr Leistung
- voll QSK-fähig

3950

Frequenzbereich:

Ausgangsleistung: Ausgangskreis:

Ausgangsimpedanz

(1,8-29,7 MHz) 2000 W CW

Pi-L-Netzwerk mit Anpassmöglichkeit bis zu einem VSWR von 3:1 (16–150 Ohm) 50 Ohm unsymmetrisch

alle Amateurfunkhänder

Eingangskreis: breitbandig mit einem VSWR < 1,3:1 Eingangsleistung:

60 W Oberwellendämpfung: IM-Abstand: : 1,8–29,7 MHz >50 dB >35 dB HF-Verstärkung 15 dB

Display: LCD Stromversorgung: Röhre:

Abmessungen: (B x H x T) Gewicht:

230 VAC (50/60 Hz) 2 x 4CX800A (GU74B) zwangsbelüftet 470 x 190 x 415 mm3

40 kg

www.reimesch.de/alpin200.html

siehe auch unsere Homepage:

- **Highlights:** · weltweit kleinste PA mit diesen Features • CAT-Interface für alle gängigen Transceiver
- integrierter Automatiktuner
- 2 Eingänge, 4 Ausgänge
- voll abgesichert · voll QSK-fähig

Transistorendstufe

Frequenzbereich: Ausgangsleistung: Ausgangskreis:

Fingangskreis:

Oberwellendämpfung: >60 dB IM-Abstand: Stromversorauna

Transistoren Abmessungen: (B x H x T): Gewicht:

alle KW-Amateurbänder und 6 m (1,8-54 MHz) 1000 W PEP Anpassung bis VSWR 3:1 (16-150 Ohm)

breithandig mit einem VSWR < 1,2:1

>35 dB (bei 800 W PEP) 115 und 230 VAC (50/60 Hz) 6 x MRF150 280 x 140 x 320 mm³

20 ka

Reimesch

Technologiepark Bergisch Gladbach · Friedrich-Ebert-Straße · 51429 Bergisch Gladbach Telefon 02204/584751 \cdot Fax 02204/584767 \cdot kontakt@reimesch.de \cdot www.reimesch.de

★ Spezialitäte	n	★ FTDI		★ c´t Bauteilesätze 🔯 LabVIEW	_
ACS 752SCA-050 9,40	ATmega 168-20AU/.PU 4.50	DLP-USB 232/245	45.00		>
AD 9833 BRMZ 9.80	ATmega 644-20AU 7,40	DLP-2232M	59.00	ct-Lab/DCP-Platine 16.00	2
AD 9835 BRUZ 14.20	ATmega 644-20PU 7.20	FT 232BL	5.80	ct-Lab/DCP-Platine 16,00 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	÷
Arduino BT 94.00	ATmega 644P-20AU 7.40	FT 232RL /RO	6.40	Projekt ct-Lab (ab Heft 10/2007 bis 12/2008) ct-Lab/DCP-Platine ct-Lab/DCP-Teillesatz ct-Lab/DCG-Platine (m.AImega32) ct-Lab/DCG-Flatine (m.AImega32) ct-Lab/D	3
Arduino Duemilanove 26,20	ATmega 644P-20PU 7,80	FT 245BL	5.90	ct-Lab/DCG-Teiles.12 (12-Bit Version) 46,00	5
Arduino Ethernet-Shield 15,00	ATmega2560-16AU 15,00	FT 245RL /RQ	6,70	Projekt ct-lab (ab Heft 10/2007 bis 12/2008 g	-
Arduino Mini 24,99	ATmega2561-16AU 15,00	FT 2232D	7,50	ct-Lab/DDS-Teilesatz 75,00 5 8 86	ö
Arduino Mini/USB-Ad 17,85	ATmega8535-16AU 5,10	FT 2232L	8,50	ct-Lab/DIV-Platine 16.00 9 . 9	
Arduino Nano 52,00	ATmega8535-16PU 4,90	TTL-232R/R3V3	27,90	ct-Lab/DIV-Platine 16,00 10 10 10 10 10 10 10 10 10 10 10 10 1	3
Arduino Shield-Proto 5,95	AT NGW 100 89,00	VDRIVE 2	39,00	ct-Lab/EDL-Platine 16,00 et a 2 ct-Lab/EDL-Teilesatz 98,00 et a 3 de ct-Lab/EDL-Teilesatz	ö
Arduino Xbee Shield 46,41	AVR-Butterfly 29,00	VMUSIC 2	62,40	ct-Lab/EDL-Teilesatz 98,00 H H H	Ž.
AT90USB KEY 39,00	AVR-Dragon 65,00	VNC 1L-1A	14,80	et Lab /FDCA Plating (CMD tailbacticle) 44.00 PP To	ń
AT tiny 13-20PU/SU 1,70	AVR-ISP mkII 39,00	VDIP1 VNC1L	39,00	ct-Lab/FPGA-Teilesatz 28,00 \$ \$ 2 = 5	3
AT tiny 24-20SSU 2,40	AVR RZRaven 119,00	A 141		ct-Lab/IFP-Platine (mit FT232RL bestückt) 22,50	
AT tiny 25-20PU/SU 2,10	CS 5381 KSZ 34,30	★ Warrior			•
AT tiny 26-16PU/SU 2,40	ENC 28J60/SP 7,20	IO-Warrior 24/SDK	58,31	ct-Lab/IFP-Teilesatz 30,00 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2
AT tiny 44-20SSU 3,40	HV 9910 BLG 2,40	IO-Warrior 40/SDK	58,31	ct-Lab/Panel-Platine 5,00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ò
AT tiny 45-20PU/SU 2,50	ISL 8487 EIBZ 2,70	IO-Warrior 56/SDK	82,11	ct-Lab/Panel-Platine 5,00 50 50 50 50 50 50 50 50 50 50 50 50 5	Ξ.
AT tiny461V-10PU 3,50	LIS 3L02 AS4 13,40	IOW24-P / IOW24-S	13,98	ct-Lab/PS3-2-Platine 16,00 d 3 t 5	5
AT tiny2313-20PU/SU 1,90	LNBK 20PD 5,10	IOW24 PV-P/PV-S	13,98	Ct-Lab/P53-2-lellesatz 38,00 E g g g,	2
ATmega 8-16AU/PU 3,30	LNBP 16SP 4,80	IOW40-S	17,61	ct-Lab/TRMSC-Platine (m. LTC1968 best) 15,00 플론했음,	_
ATmega 8L-8AU/PU 2,90	LNBP 20PD 5,60	IOW56-MOD	41,53	ct-Lab/TRMSC-Teilesatz 29,00 호스힐트	:
ATmega 16-16AU/PU 5,00	MCZ 33199EF 2,90	JW20 GP8-P/8-S	10,34	Frontplatten, Einbausätze und Gehäuse Ifb.	Ě
ATmega 16-L8AU/.PU 5,50	OPA 2134 PA 2,90	JW24 A8-8-P	13,98		
ATmega 32-16AU/.PU 6,50	STK 500 69,00		33,08		
ATmega 48-20PU 2,90	STK 600 199,00	JW24 GP32-P/S	13,98	Artikel-Schnellabfrage	•
ATmega 64-16AU 8,90	STK 600-DIP40 99,00	JW24 RC-P/RC-S	13,98	www.segor.de	
ATmega 88-20AU 3,60	TDA 5051AT/C1 6,40	SW24 R4-P/R4-S	13,98		
ATmega 88-20PU 4,20	VS 1011e-S 14,80	SW24 R6-P	13,98	\ <i> </i>	
ATmega 128L-8AU 10,40	X-Port1001000-03R 65,00	LED-Warrior01-350	14,27	electronics	
ATmega 128-16AU 9,80	ZXLD 1350 1,50	LED-Warrior01-700	14,27	EIECTIONICS	
ATmega 162-16AU 5,30	ZXLD 1360 2,30	LED-Warrior01-1000	14,27		
ATmega 162-16PU 6,50	ZXLD 1362 2,50	 www.codemercs.co 	om		
Staffelpreise im Online-Katalo	g. Versandspesen siehe: www.s	egor.de/L1Versand		Kaiserin-Augusta-Allee 94 • 10589 Berlin	
Preise in EURO € /Stand: 1.12	2.2008. Änderungen vorbehalte	n. eMail: sales@segor.d	e	Tel: (030) 43998-43 • Fax: -55 • www.segor.de	
_					_
					П

300									
	Neu		C-Compiler		PROPELLER		GPS-Modu	ıle	AVR32
	Sparkfun-Prod	ukte	Standardversionen		PROP/D40	14,87	NL-95807	13 73	
	SFE00244	66.52	für HC08/HC11/HC1	12	PROP/M44	14,87	Jupter30		Gateway Kit
	SFE00252	17,85	ICC08/STD		PROP/Q44	14,87	GPS/GALIL		ATNGW100
	SFE00395	76,28	ICC11/STD		PROP/ ./HYDRA	236.75	NL550ERS		114,87
	SFE00396	76,28	ICC12/STD		/RPM	70,80	NL550USE		Starterkit
ü	SFE00400	33,08	für MSP430		/START	112,94			STK1000
-	SFE00698	69,14	ICC430/STD für ARM7TDMI		/Proto	36,40	Parallax	40,00	535.50
	SFE00719	13,33	ICCARM/STD		/STICKKIT	71,28	GPS-Modu	d.	
	SFE00741	100,79 39.27	für AVR		/STICKUSB	93,77	Px28146	"	ZIGBEE
	SFE00758 SFE00761	24.51	ICCAVR/STD		/U2S	20,82		92.11	ZEBRA
	SFE00847	26.77	und jetzt auch für Pr	ropeller	/ACCKIT	117,78			70,21 Starterkit
	SFE00849	26.77	ICCPROP/STD				Kabel f. GP		inkl.2
	SFE07915	53.55	jeder Compiler		PING)))	29,65	nicht im Lie	ter-	Module
ü	SFE08161	49,03			SRM400	37,12	umfang		296,31
-	SFE08257	37,48	Passender HW-Key		Kompaß/Mag	netfeld	CORTEX N	13	GPS-
	SFE08370	53,55		88 EUR	Micromage	55,81	STM32PRII		Bakenuhr
	SFE08371	53,55	BASCOM	20.44	Micromag3	59,00		43,91	
	SFE08372	53,55	8051	82,11 93,99	Ms2100		STM32PRII		Jetzt mit
	SFE08658	17,85	AVR	33,33	A L/(L	69,72		69,35	neuen
	SFE08772 SFE08791	12,97 40,10	FOXBOARD		STK500	91,49	Gyrosens		Funktionen: Locator und
	SFE08943	17.85	FOX/CASE	14,16	AVRISP500	39.87	MLX90609		Standort-
	SFE08975	57,60	FOX/CB	82,11	AVRISP500IS			38,97	anzeige
- 6	Weitere Artikel auf		FOX/COM FOX/CONSOLE	201,11	AVRISP500TN	Y 68.72		38,97 38,97	
		umage	FOX/GM	20,11	ATAVRISP2	45,82	EEA-R2	30,97	Grundbaus.
	Flash,seriell		FOX/LX832	165.41	ARMJTAG	22,00	Neu		Inkl.GPS
	AT45DB011B-SU AT45DB011D-SH	1,41 1.48	FOX/POWER	20.11	AVRJTAG	39,87	LISY300AL	14,80	69,00 Displ.
	AT45DB011D-SH	1,40	FOX/PROTO254	11,78	AVRJTAGUSB	49,09			Dispi.
	AT45DB041D-MU	2.22	FOX/PROTOSO	11,78	MAXQJTAG	22,02	UOLED	Dispi.	16.05
	AT45DB041D-SSU	1.88	FOX/TUX	23,68	MAXQJTAGUS	5B 61.47	96G1	72 29	Gehäuse
	AT45DB041D-SU	1.88	FOX/VHDL	118,88	MSP430JTAG		128GM		klar/blau
-	AT45DB081D-MU	2,71	FOX/ZB	27,25	MSP430JTAG				unbearb.
	AT45DB081D-SU	2,03	GPS/Galileo		11101 10001110	119.89	96PROP	88,66	für blaues
	AT45DB161D-SU	2,61	NL550ERS	49,00	MSP430JTAG	RF .	ULCD		Display
	AT45DB161D-TU	2,96	NL551USB	49,00		119,89	320PMD 1	154,40	8,45
	AT45DB321D-SU	4,93	STR911FAM44X6	14.96	MSP430JTAG	TNY	USDC128		Displ.unbel.
	AT45DB321D-TU M25P05-AVMN6	4,76 1,94	ATXMEGA128-A1	8.33		68,72	UUSBCE		Gelb/reflekt.
	100.0		:		TMS320JTAG		UUSBMB	35,57	12,70
	ALLOTEDOADD VCIO	andkosten	Inland: 9,80 EUR (bis 4 kg)	\	ersandkosten Euro		ng. Klaus S 350 564		
	AMERICAN . Voi	rkasse / Ba	inkeinzug / Kreditkarte:	U	nd Welt auf Anfrag	2 11 1	14 Berlin		ANDER
			3,35 € /Einschreib. 4,50 €	0	der im Internet		030-294917		ECTRONIC
	in EUR/Strick	ket 6,50 €				Fax	030-29491	795 🎞	000000
	intel 100% Murch Weiter	re Infos, neue s-Bestellung i		ı.sande	r-electronic.	de Mail	: info@san	der-ele	ctronic.de

Einseitige und zweiseitige durchkontaktierte Leiterplatten Multilayer bis zehn Lagen, dünnster Kern 0,25 mm Datenformate Gerber, Eagle, Target, Sprint-Layout, Mentor Graphics, HPGL

Extras Lötstoppmasken (UV- u. 2K-Lack, fotosensitiv u. a.), Heißverzinnung, Sonderoberflächen (Karbondruck, Bondund Steckervergoldung), Zusatzdrucke, Konturen (gefräst oder geritzt), Dickkupfertechnik, elektrische Prüfung usw. Muster, Kleinserien und Serien bis 5000 Stück pro Monat

DIN/ISO 9001 zertifiziert und UL-gelistet

Eilservice ab 24 Stunden

Loch Leiterplatten GmbH Dipl.-Phys. Gerd Loch (DJ8AY) Volmerstraße 14 · 12489 Berlin Telefon (030) 6 31 63 83 · Fax 6 31 63 84 E-Mail info@loch-leiterplatten.de Internet www.loch-leiterplatten.de

WiNRADiO bietet ein breites Leistungsspektrum

Fünf Modellserien: vom hochwertigen Amateur-Receiver bis zum professionellen Monitoring-Equipment. Weitere Features: Integration von Signaldekodern, IP-Remote Control, visuelle Feldstärkenüberwachung, Frequenzkonverter bis 8,6 GHz, GPS-Option, USB oder PCI-Version, auch unter: www. ssb.de

Unser Technik-Team berät Sie gerne: 02371-9590-24

Fon: 02371-9590-0 Fax: - 20 www.ssb-electronic.de

HEINZ BOLLI, HB9KOF C/O HEINZ BOLLI AG Rütihofstrasse 1 CH-9052 Niederteufen Tel. +41 71 335 0720 Mail: heinz.bolli@hbag.ch

Ausführliche Info erhalten Sie auch unter: www.hbaq.ch

KN-Electronic

Ing. Klaus Nathan - DL2AZK -Bahnhofstraße 12 98724 Neuhaus/Rwg.

Bausatz: 69,90€

Bausatz: 69.90€

Bausatz: 59.90 €

Bausatz: 36,90 €

Bausatz: 15,90 € Bausatz: 49,90 €

Bausatz: 59.90 €

Fertigmodul: 49,90 €

17.90 €

24.90 €

15,90€

Bausätze für Funkamateure · Kleinwerkzeuge · elektronische Bauelemente 1,3-GHz-Zähler DC 011-E, 8-stellig, 4 Messbereiche, 2 Eingänge, 10-mm-LED-Anzeige Alugehäuse f. DC-011E, bearbeitet – inkl. Frontrahmen, Buchsen, Füßen etc. TCXO-Zeitbasismodul für DC 011, einbaufertig bestückte Platine 80-m-Amateurfunk-RX, SSB/CW, Einfachsuper, 455 kHz ZF (Keramikfilter), Preselektor, S-Meter-Verstärker, 4-stellige digitale Frequenzanzeige (ZF bereits programmiert) Gehäuse f. 80-m-RX, bearbeitet – inkl. Lautsprecher, Buchsen, Füßen, LED-Rahmen LCD-Frequenzanzeige, 6-stellig, Auflösung 100 Hz, ZF frei wählbar Aktives NF-Filter, 3,2 kHz bis 200 Hz; Kopfhörerverstärker, Netzteil, bearbeitetes Gehäuse

NF-Notchfilter, exzellente Eigenschaften (Q = 100, Dämpfung >40 dB bei 1 kHz) 3-Band-VFO, 1,9 bis 2 MHz/5 bis 5,35 MHz/5,2 bis 5,5 MHz – ideal für 9-MHz-Projekte! 50-W-MOSFET-Endstufe, bis 30 MHz, 3-stufig, ca. 5 mW_{in} (12-35 V), ohne Kühlkörper

DAFC-Baugruppe für QRP-99 oder andere Projekte

3-Band-QRP-Transceiver QRP 99-IV für SSB, CW, PSK usw., kompl. mit bearbeitetem Alu-Gehäuse (150 x 80 x 150 mm³) 80/40/20-m-Band; Einfachsuper; 9-MHz-ZF (2 Ladderfilter, 6-polig für SSB, 4-polig für CW); LED-S-Meter; LCD-Frequenzanzeige 4,5-stellig, stufenlose Leistungsregelung (bis ca. 10 W_{out}), vorgefertigter Kabelbaum und beleuchtbares Dispay! Info kostenlos! Bausatz: 289 NN €

Monobandtransceiver SSB/CW/PSK usw., 9-MHz-ZF, 6-poliger Quarzladderfilter, Notch/Peak-Filter, Preselektor, 10-W-PA, Bausatz inkl. Gehäuse (55 x 100 x 150 mm³) für 160/80/40 oder 20 m **Bausatz: 169,90 €**

Bausatz: 39,90 €

Liste gegen 1.44 € in Briefmarken - Telefon: (0 3679) 72 57 67 E-Mail: KNEQRP@aol.com · Homepage: kn-electronic.de

Preisbeispiel:

Preisbeispiel:
Komplette 2-Ele.-3-Band-Boom-Quad
für 28/21 und 14 MHznur € **559,**−

Fiberglas-Rohre (radialverstärkte GFK-Rohre) äußerst günstig ab Werk!

10//	Ø/Wandst. Bruchgrei				
4-8-	20×3,0 ∅ 28×3,5 ∅ 35×3,0 ∅ 40×4,0 ∅ 50×4,0 ∅ 50×8.0 ∅	37 kg 110 kg 186 kg 278 kg 504 kg 760 kg	25 kg 73 kg 124 kg 185 kg 336 kg 506 kg	7,97 10,95 13,33 16,12 23,20 35,70	

VON DER LEY-Kunststoff-Technik

Laupendahler Weg 19 · D-42579 Heiligenhaus Telefon: (0 20 54) 8 04 56 · Fax: (0 20 54) 8 04 41

info@knauer-funk.de USB-ANSCHLUSS Birkach, Waldblick 28 · 96158 Frensdorf, OT Birkach Tel. 0 95 02 / 2 12 · Mo-Fr 9-12 / 15-18 Uhr · Sa na

Elli P. staunt und kann es kaum glauben, dass man in Deutschland QSLs zu »böhmischen« Preisen drucken kann.

1000 Foto-Hochglanz-QSL-Karten inklusive Versand innerbalb DL gibt es für 89 EUR. FUNKAMATEUR-Abonnenten zahlen sogar nur 84,55 EUR!

Bitte Katalog 2008 mit Preisliste, Bestellformular und Muster-QSL-Karten anfordern. Gebührenfrei Hotline: 0800-QSL SHOP (775 74 67) Fax: 030-44669469 Internet: www.qsl-shop.com

Private Urlaubsquartiere finden und anbieten www.privatvermieter.de

Hildegard.Zenker Molchstr. 15 12524 Berlin Tel. 03085961323 Email: Info@QRPproject http://www.QRPproject.de

QRP Bausätze und Zubehör für den Selbstbau im Amateurfunk. Alle Bausätze mit ausführlicher deutscher Baumappe. Alle Baumappen zur Vorabinformation frei auf der Homepage!

Unterstützung auch für Anfänger durch Nikolai, DL7NIK und Peter, DL2FI

Auszug aus unserem Angebot: Monoband CW Transceiver Mosquita: TX 5W, RX Superhet: ab 71.- Euro

Hobo Allmode Monoband: ab 290,-Blue Cool Radio CW Transc. 80m-17m ab 305,-Speaky Allmode 5 Band Transc. ab 174,-Tramp-8 CW 8 Bänder ab 225,-Spatz DDS Monoband CW Transc. ab 169,-

ZM4 Z-Match QRP ATU 87,-DipIt das Dipmeter 149,-

Elecraft, Small Wonder Labs und OHR Bausätze mit deutscher Baumappe und Support aus Berlin.

CD mit allen Baumappen und vielen hilfreichen Tipps und Tricks gegen 10,- Schutzgebühr

Nimm das Beste! **Vergiss die Reste!**

Take the best! Forget the rest!

Prenez le meilleur! Oubliez l'inférieur!

Prendi il migliore! Dimentica l'inferiore!

Prendete optimum! Obliviscete inferium!

Tag det bedste! Glem resten!

H2000 Flex®

... unser bewährtes Koaxialkabel für den Einsatz im VHF-, UHFund SHF-Band.

Fernlehrgang Amateurfunk-Zeugnis

Ausbildung für alle Klassen durch staatlich geprüften, seit 45 Jahren bewährten, Fernlehrgang. Jetzt mit erweitertem Lehrplan nach dem neuen Amateurfunkgesetz (AFuG) und neuer Amateurfunkverordnung (AFuV). Beginn jederzeit!

GRATIS-Infomappe gleich anfordern! Lernen mit Geld-zurück-Garantie!

FERNSCHULE WEBER

Techn. Lehrinstitut seit 1959 - Abt. 030 Postfach 21 61 - 26192 Großenkneten Telefon 0 44 87 / 263 - Telefax 0 44 87 / 264

www.fernschule-weber.de

Frequenzbereiche:	rot - 2: 1-30 MHz; g	elb - 6: 3-50 MHz
T25-2 0,25	T68-20,70	T157-2 3,20
T44-2 0,60	T68-60,80	T157-6 6,00
T50-0 0,60	T68-10 1,20	T184-2 4,80
T50-20,60	T80-20,75	T184-6 9,95
T50-6 0,60	T94-21,20	T200-6 9,95
T50-10 0,70	T94-6 1,40	T300-2 19,95
T50-12 0,60	T130-2 1,80	T400-2 24,00
T68-01,00	T130-6 3,20	T520-2 44,80
Neue Typen: T106-26	6 2,50 T130-17 4	,50 (14er-Pack 55,00)
Sonderangebot:		

T200-2 nur€4,80 NEU: T200A-2 9,00 T225A-2 10,00

errit-mingker	116	
FT37-43 1,00	FT82-43 1,90	FT140-43 6,00
FT37-61 1,00	FT82-61 1,90	FT140-61 7,50
FT37-77 1,00	FT82-77 1,90	FT140-77 7,50
FT50-43 1,20	FT114-43 2,70	FT240-43 19,90
FT50-61 1,20	FT114-61 3,50	FT240-61 19,90
FT50-77 1,20	FT114-77 3,50	FT240-77 19,90

Andv Fleischer

Paschenburgstraße 22 · 28211 Bremen Telefon (04 21) 35 30 60 · Fax (04 21) 37 27 14 quarze@andyquarz.de · www.andyquarz.de

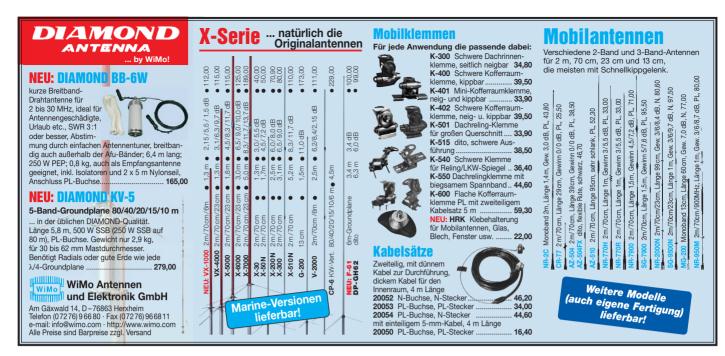
Der Online-Kleinanzeigenmarkt

Jahresnutzungsgebühr nur 6 Euro: Verkauf- und Ankaufanzeigen sowie Auktionen. Bilder-Upload möglich. Keine Einstellgebühren oder Provisionen.

Nur verkaufen, kaufen, versteigern oder mitbieten... FUNKAMATEUR-Abonnenten können sich mit Abo-Nr. und Postleitzahl kostenlos anmelden.

Wo wird Ihre QSL-Sammlung einmal landen? Im weltgrößten Archiv

bleiben auch Ihre OSLs für die Zukunft erhalten.


JYZ. Argentinierstr.30a A-1040 Wien

Paketsendungen: c/o ORF-ROI Collection A-1136 Wien

Nachlassverwertung: Faire Auflösung von Amateurfunk- und SWL-**Stationen.** Kurze Nachricht genügt. Chiffre 8, PF 73, 10122 Berlin

Anzeigenschluss für Ausgabe 3/09

gewerbliche Anzeigen: 5. Februar 2009 private Kleinanzeigen: 9. Februar 2009

KLEIN

VERKAUF

Funk & Amateurfunk

Monoband-Röhren-PA BV 131 für 10 m, mit der robusten Pentode EL519 und leicht abstimmbarem Auskoppelkreis, Output 70 bis 120 W PEP, FP 79,—, dto. Typ KLV 400, wenig gebraucht, FP 159,— Beide nur an SAH. Tel. (0171) 545 08 02, rhdavid@t-online.de

Kommerzieller Hagenuk Schiffssender EGKS 400, mit 2x QE08/200H, 2 Ersatzröhren, 400W PEP, mit zusätzlicher ext. Endstufe von 9 dB Verstärkung, Röhren 2xRS 1016, mit 2 Ersatzröhren, komplett 1099, – Verwendbar als 3-kW-Sender oder PA. dlS6nca@t-online.de

SEG100, komplett u. russischer Jeep GAZ69m (Bj.65, H-Kennz.,TÜV neu) mit 10-m-Teleskopmast, VB 4500,—. Tel. (0160) 91309471

HF-Manpack PRC-319, 50 W, 1,5-40 MHz, mit viel Zubehör, 800,–. Tel. (0281) 34770, olaf. kramer@arcor.de

Manpack PRC 515, 2-29,9999 MHz, RX ab 0,5 MHz LSB, USB, CW, AM, 5/20 W ATU, Akku neu, 550,—. Tel. (06151) 899384, l.schwinn@gmx.de

SGC SG-2020 KW-SSB/CW QRP TRX, 0–25 W, mit ADSP2, NR, wenig benutzt, unverbastelt, VB 400.—. Tel./Fax (04551)7182

Kenwood TM-221E, 145-MHz-Mobilgerät, Output 45/5 W, ordentlicher Zustand, 95,- VHB. (0951) 420792, dj5ne@darc.de

TM-V7, Top-Zustand, frequenzerweitert, mit OVP und dt. Anleitung, VB 350,-. DG6ZOD, (039346) 40421, karolahaberland@t-online.de

Kenwood TH-F7E, guter Zustand, mit Akku (ok), dt. Handbuch, Ladegerät (nicht original) und als Extrazubehör Batteriekasten, zweite Antenne und Mikrofon/Ohrhörerkombination. VB 210,— DJODJ, Tel. (02317) 993471

Kenwood TM-255 und TM-455 mit O-Mike, Bedienungsanl., VHB je 350,—. DD8AA@gmx.net

2/70/23 Tribander Kenwood TM-741, mit allen Unterlagen, VB 500,-. DL1GRT, (0731) 84949 nach 17h

2-m-FM.Mobiltransceiver Sommerkamp FT-269R (baugleich mit Yaesu FT-270 R), 25 W, mit Speaker-Mic, Mobilhalterung und dt. Bedienungsanleitung, guter Zustand, 70,-. (0676) 4111602, stef111@gmx.at

ICOM IC-202, guter Zustand mit Teleskopantenne und Original-Mikrofon. 140,—. Tel. (05723) 1292, b-arnold@t-online.de

TM-G707, Top-Zustand, frequenzerweitert, mit OVP und dt. Anleitung, VB 250,- DG6ZOD, (039346) 40421, karolahaberland@t-online.de

Kenwood TR-9000, 2-m-Allmode, 10 W FM, ca. 20 W SSB, sehr gepflegt, mit 0-Mike gg. Gebot. (0179) 710 12 71, Emsland-Funk-Guckyll @gmx.de

TM-D700E (G2.0), technisch in gutem Zustand, VHB 400,-. dl2nau@gmx.de

Yaesu FT-736R, 23-cm-Modul und Netzteil eingeb., techn./opt. ufb Zustand, NR-Gerät, Standmikro MD-1, Symek 9k6-Baustein noch nicht eingebaut als Zugabe, VB 950,—. df6sa@vfdb.net

Siemens C5, fertig auf 70-cm-Afu 430-440 MHz umgebaut, 18 W, 59,—. (02575) 955050 (AB), Rainer@Siepert-net.de

70-cm-Duplexfilter für Relaisweiche, Telefunken, abgeglichen auf 439,275 / 431.675 MHz, Durchgangsdämfung 0,8/1,0 dB (Rx/Tx), Entkopplung RX/TX >100 dB, jede Frequenz im 70 cm Band einstellbar, schwer versilbert, 4 Kreise je Pfad, temperaturkomp., 175,–. DF7AP Tel. (01515) 9240600

Duplexer für Autoradio und 70-cm-Funk, Kathrein Typ K 632721, 20,–. (0172) 830 89 20, DH3FEN@darc.de

2-m-GaAsFet-Mastvorverstärker Low-Noise Preamplifier SUPER-AMP SP-2000 von SSB-Electronic, Iserlohn, neu, unbenutzt, originalverpackt gegen Gebot zz. Porto. dl2jt@gmx.de oder (07121) 55331

Rauscharmer 2-m-Vorverstärker MKU LNA 144A Rauschzahl 0,4 dB, Fa. Kuhne, noch Restgarantie, 170,–. Tel. (0381) 724142, dl5cc@darc.de

23-cm-Mastvorverstärker SSB-Elektronik SP-23 mit 2 Koaxrelais, VB 180,-. Tel. (0731) 84949 nach 17h, dl1grt@darc.de

Japanische 2-m-Röhrenendstufe APB-300S mit 4X150 (ca. 300-350 W), wurde 07/2007 überholt und repariert, VB 350,-, bevorzugt an SAH. DL3FBJ@darc.de, (0171) 81 49 365

70-cm-Leistungsverstärker U701b, in 30 W, out 300W, mit neuer Ersatzröhre GI7B, 550,-. Tel. (0381) 724142, dl5cc@darc.de

70-cm-Transistor-PA, 140 W out, Allmode, SWV-Schutzschaltung, Eingangsüberlastanzeige, Unterlagen, B=160, T=345, H=110, 8,7 kg; 250,-Tel. (03722) 91805, aur.Wiedemann@gmx.de

2x FM M0 80 Motorola-Geräte, je 25,-; 1x PSK31 für Icom IC-706 mit Kabel und Handbuch, 10,-. DF7UU, Tel. (07844) 2420

Telecar 9 RX/TX Modul aus Umrüstaktion Sende/Empfangsmodul 2-m-Band, geprüft, gemessene Leistung 18 W, 18,—. db6vs@t-online.de

Handfunkgerät SE129 von ASCOM (baugleich mit Bosch HFE 165), so gut wie neu und funktioniert tadellos (QRG 147,55 MHz), VB 65,-. Tel. (0170) 3053312, berkmann.wolfi@web.de

SSB-PA TLA432-100, 70-cm-Allmode-PA, 100 W, VHB 300,-. DD8AA@gmx.net

Bosch Autotelefon COM524 D-Netz 8 W Sendeleist. (Motorola 2700) Kompl. Mit V-Kabel für abgesetzt. Betrieb mit Beschreibung, 50,-; dazu Weiche Bosch AW7035AP 400-470 u. 825-960 MHz und Radio 0.145-108 MHz, 30,-; Bosch Antenne KFA 1100R für beide Bereiche und Radio eine Antenne für 3 Bereiche, 30,-. Tel. (05121) 46782, gerda.joachim.jacobs@arcor.de

WATKINS-JOHNSON HF-1000, professioneller KW-DSP-Kommunikationsempfänger, eingebauter Preselektor, alle Originalunterlagen mit Schaltbildern vorh., wenig gebraucht, VHB 2300,—. Tel. (0391) 6313236. DK4CD@t-online.de

RX 57 und RX 60, beide funktionsfähig, 180 bzw. 250,—. Nur SAH. Tel. (06735) 354, arno.dl8yv@t-online de

RX350D Ten-Tec DSP-SW-Empfänger mit 12-kHz-DRM-Ausgang, 990,-. (07231) 418892, axel.groeger@googlemail.com

Sammlerstück: Grundig Satellit 2100 mit SSB-Zusatz, sehr guter Zustand, Anleitung, betriebsbereit, 220.–. DM4ET, Tel. (02192) 7187

2 Stück haugleiche Hagenuk SSB-Seefunkempfänger EE 421, Bj. 78, amerik. Herst., 220– 24 V, ausgetauschte Geräte (GMDSS ersetzt). Niemeyer, Tel. (04499) 91238

LOWE HF-150, selten verfügbare Europa-Version, absolut neuwertig und voll funktionsfähig, mit orig. LOWE-Netzgerät, engl. Orig.-Beschreibung, deutsche Anleitung als Kopie, FP 350,–. w-0304@t-online.de

Tristar 727, 120 Kanäle, AM/FM, 10 W, gegen Gebot zu verk. Emsland-Funk-Guckyll@gmx.de

Röhren-RX Hallicrafters Skyrider Marine S-22-R mit Unterlagen, 250,-. DL9KAB, Tel. (0228) 642873 oder mn2004@netcologne.de

Professioneller Wettersatellitenempfänger 137 MHz VIERLING WEATHERMAN, 95,–. johann. reiterer@liwest.at

Collins 51J2, ehem. Monitor von Radio Free Europe in München gg. Gebot. KBLLT@t-online.de

CB-Mobilstation Team RoadCom 12/24V, 60,-. (06158) 188881, hallo@z-online.com

DNT Carat Exclusiv 40/12, 40 Kanāle, HF-Ausgangsleistung 0,5 W in AM und 4 W in FM, digitale Kanalanzeige, 35,—. Tel. (06158) 188881, hallo@z-online.com

Allmode AM/FM/USB/LSB Euro-CB 3900LCD, 11-m-CB-Bereich und 10-m-AFU-Bereich, gegen Gebot zu verk. Emsland-Funk-Guckyll@gmx.de

Urlaubsantennen, "DX-Dipol 3B" 40-20-15 m, kompl. m. 13,9 m Koaxkabel, PL-Stecker, Abspannung in praktischer Tasche – sofort QRV, urlaubsfertig! Ab Lager Euro 69,—. 1-Band-DX-Dipol jetzt lieferbar bei www.eurofrequence.de, Dierking NF/HF-Technik, Tel. (06701) 200920

HY-Gain LP1010AN, 14-El.- Log.Per.Beam, 10– 30 MHz, 4,5–5 dBd, zur Antenne passender Tuner MFJ989C, Kenwood TH-F7E 2/70 Duobander, Speakermike SMC33, 2. Akku zu verkaufen. Tel.++43-7724-2406, Zarbl.Fritz@aon.at

QMS Antennensystem aus den USA Frequenzbereich 1,6–30 MHz: SGC 230 Automatic-Tuner im Fuß, SG 303 Strahler und passender Anbaufuß, VHS. (05521) 73425, Funkerfan77@ t-online.de

4-Element 6-Bandyagi von ECO, wie neu, 30-20-17-15-12-10 m, zu verk. (039202) 60625 nach 18 Uhr, DL9MKA@darc.de

Cobwebb-Antenne 10, 12, 15, 17, 20 m horizontaler Rundstrahler, war ein Jahr auf dem Dach, relativ klein, unauffällig, wenig Windlast, gutes SWR, nur 1 Speiseleitung, 200,–. (0151) 17861263, dl2grf@gmx.net

9. Amateurfunkund Computermarkt in Neumarkt

Samstag, 18. April 2009, von 9 bis 16 Uhr in 92318 Neumarkt in der Oberpfalz (an der A3 zwischen Nürnberg und Regensburg) Großer Flohmarkt und kommerzielle Händler.

Kontakt: UKW-Berichte Jahnstraße 7 · 91083 Baiersdorf Telefon (0 91 33) 77 98-0, Fax -33 E-Mail: afumarkt-nm@gmx.net Für April 2009 vormerken!

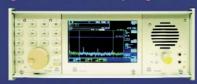
Private Urlaubsquartiere finden und anbieten www.privatvermieter.de

Möchten Sie das Antennensimulationsprogramm **EZNEC** verstehen?

Wollen Sie Ihre HF-Kenntnisse auffrischen?
Wenn ja, laden wir Sie ein in unser Antennenseminar im Engadin/Schweiz. Weitere Informationen finden Sie unter www-antennenseminar-ch

KLEIN ANZEIGEN VERKAUF

Funk & Amateurfunk


US-Militär-Mobil/QTH-Ant., 300 cm teilbar, 3,5–80 MHz mit Tuner mögl. Federfuß, 150,-; Mil. 40 m Langdipol auf Haspel mit Band Trennstöpsel, 30,-; HUSTLER/USA MO 1+2 KW-Mobil-Knickmaste, neu, OVP, je 25,-; ab 2 Stück 2x 4x4 Antm. Für Reserverad Jeeps neu 60 mm Durchm., 60 cm mit Fuß, je 35,-; Tonna 2 Ant. 2-m-Band neu 4+9 Ele, port., 30,-/40,-; Annecke Loop 80 cm Durchm., 24–30 MHz, 99,-; Yaesu RSM 2 KW/2-m-Mob.-Ant. 200 W bel., 35,-; Maldol 3-Band-Mag.-Mob.-Ant. 100 cm N-B., zus. 95,-; 2 PA für 6 m, B. neu, 35 W, je 40,-; Triplexer neu, 25,-; Hustler-Mob. Gestockt 8 dB 260 cm 3/8 mit Fuß, 35,-; Mizuho 40-m-Handy Tel. Ant. BNC z.B. FT-817 neu, 25,-; Firestick/USA 2 m gewendelt 100 cm Mob.Ant, neu mit Fuß, zus. 25,-; versch. Wilson/USA Sp. Gerne Liste. Tel. (06135) 4894, Fax (06135) 6277

10m/11m Hirschmann Mobilantenne, 20,–. Tel. (08732) 2362, irouschek@t-online.de

Comet Rundstrahler 2 m und 70 cm, CA-2x4MAX, Länge 5,10 m, Daten ähnl. Diamond X-510, neuwertig, 69,—. b-arnold@t-online.de

Was nach SDR kommt:

Digitaler Kurzwellenempfänger RDR54

Digitalisierung direkt an der Antenne mit 17 Bit (SFDR >100dB)! Vollständig integrierte Signalverarbeitung, kein PC erforderlich! 2x Audio + Video (Spektrum + Wasserfall) von 0 - 30 / 50 - 54 MHz! Ab Euro 2.750,- (Spektralauflösung 5 Hz, VGA-Display).

www.Reuter-Elektronik.de

Burkhard Reuter Konstruktion & Musterbau Ziegelstraße 54, 06862 Dessau-Roßlau Tel. 034901/67275 Fax 034901/67276

2 Dachpfannen-Antennenmastdurchführungen, Kunststoff, rot, 40 x 23 cm, Typ Rheinlandpfanne/Falzziegel, neu, 10,-. Tel. (07121) 346103, dl8sat@t-online.de

2 Fiberglasmast/Teleskopmast 8 m, noch nie benutzt, 900 g, Transportlänge 1,15 m, je 35,–. Tel. (0171) 5425617, do1flh@gmx.de

Universeller Antennen-Richtungs-Controller für Azimut oder Elevation. Kann als Ersatz für diverse Rotoren oder auch Actuator (Schubstangen) genommen werden. Der Prosistel D Controller verfügt über eine digitale Richtungsanzeige, Vorwahl, RS232/Software usw. Der Controller ist nagelneu, ungebraucht. Neupreis 340,—, Abgabe gegen Gebot an dk5ew@darc.de oder Tel. (0151) 23326313

Master Antenna Controler MAC-200 von SGC, 200,-. Tel. (036376) 56882, dm4ti@darc.de

Neuwertiger Antennenrotor RC5A-3-P von Create mit Steuerteil und KS 065 Oberlager zu verk. (039202) 60625 nach 18 Uhr, DI 9MKA@darc.de

Daiwa CNA-2002, 2,5-kW-PEP-Antennentuner, in einwandfreiem Zustand, OVP, VB 350,—. (0511) 318865, marcus@marcusbusch.eu

1-kW-Automatiktuner AT-1000, neuwertig, zu verk. Tel. (039202) 60625 nach 18 Uhr

Automatik-Antennentuner CG-5000, bis 800 W für 500,— zu verk. oder gegen andere Amateurfunkartikel zu tauschen. Tel. (02302) 760244, DC9YC@gmx.de

Symmetrischer Antennenkoppler Johnson Viking, Typ 250-3, VHS. dl6lbi@darc.de, Tel. (04120) 1024

Transmatch, 120,--; 2-m-HFG TH-K2 von Kenwood mit LS-Micro u. 12-V-Kabel, 110,--; Mirage-PA B34, 25,--; 2m/70cm-Duobandyagi v. Cushcraft je 5 el., 40,--. Tel. (07431) 58889, Steier-Albstadt @t-online.de

AT-1000Pro 1-kW-Auto-Memory-Tuner, nagelneu, Weihnachts-Doppelkauf, siehe www.Wbow.com/LDG/at1000Pro, 485,—. Tel. (06562) 965893 o. (0172) 728 6232 MFJ-Versa Tuner III, 1,5 kW, Typ 962D, neuw., gekauft 10/2008, keine Gebrauchsspuren, NR, mit Rechnung von Fachhändler (Garantie), mit Manual u. OVP, VB 240,—.a.r.rinker@gmx.net

Antennentuner MFJ-949E, KW, max. 300 W Sendeleistung, Kreuzzeigerinstrument, Dummyload, integrierter 4:1-Balun, 2-Antennenumschalter, Leistungsanzeige umschaltbar von 30 auf 300 W, Anpassung auch von symmetrischen Antennen, wenig genutzt, wie neu, FP 150,—. (0951) 420792, dj5ne@darc.de

Mic-Buchsen-Adapter u. Verbindungsleitungen für Ihre Transceiver, Zusatzgeräte liefert mit Buchse und Stecker für Yaesu, Icom und Kenwood. Nur pro Stück Euro 14,-: www.eurofrequence.de, Dierking NF/HF-Technik, Tel. (06701) 200920

YAESU-Line Multiscope Y0-901 und Stationslautsprecher SP-901, guter Zustand, Preise VS. Tel. (05723) 987699

Für den FR-101: 6-m-Bandmodul und 2-m- Modul gegen Gebot zu verkaufen. MathiasPrange@web.de

Kenwood 250-Hz-Quarzfilter YG-455CN-1 für 455-kHz-ZF, passend für TS-850, TS-450/690, TS-940, TS-950 und evtl. andere, wie neu, 95,-. Tel. (0171) 4074510, E-Mail verkauf@dk9ip.de

Netzgerät FP-757HD, max. 20 A bei 13,5 V DC, Lautsprecher eingebaut, 3 W/4 Ω , 75,– plus Versand. dl1ncf@darc.de, Tel. (09122) 183719

ICOM-Schaltnetzteil PS 125 (passend z. B. zu IC-756 Pro/2/3), 380,-. Tel. (06735) 354, arno.dl8yv@t-online.de

Kenwood Netzteil PS-30, Top-Zustand, 100,-. (0151) 12546362, herbert. Jordan@zapp.com

CTCSS-Unit CTN-170 für Standard C-170/470/178/478, neu, 10,-. (02361) 484525, funkboerse2@dl1ydd.de

microKEYER Cat- und Soundkarten-Interface von microHAM inkl. CW-Keyer (WinKey 10) in neuw. Zustand, mit Kabelsatz für lcom (D837-IC-8), dt. Anleitung und CD (NP bei Wimo 330,–) VB 220,–. dl6lbi@darc.de

Interface RigExpert-Duo, 120,-. DL4XAK@darc.de

SCS PTC II, Multimode-Multiport-Controller für PACTOR-III, PACTOR-I, PACTOR-I, AMTOR, RTTY, CW, FAX, SSTV, Packet-Radio, mit Handbuch und Stecker, DSP-1 Modul für Paket, AFSK und FSK von 300-19200 Baud werden unterstützt, 2 MB RAM, neuwertig. 450,— sybastian@gmx.de

R-327 Universal-RTTY/FS-Tastgerät für R-250M u.a. mit dt. Frontplatte, aus NVA-Bestand, sehr guter Zustand, 150,-. Tel. (04941) 5934, DL9BDM@darc.de

Dierking-Soundkarteninterface ED16MI mit Mikrofonkabel für Kenwood, wenig benutzt, VHS. Tel. (07476) 914 51 48, DL1SEW@darc.de

Kenwood-Adapter MJ-88, Western RJ-45 auf 8-pol. Dose, neu, OVP im Plister, 25,—. E-Mail dd7zg@hotmail.com

Power-Netzgerät 13,8 V, 45 A Dauer, HF-dicht, nur 2,5 kg, 106,--; Netzgerät 13,8 V, 30 A Dauer, HF-dicht, 59,--; Netzgerät 13,8 V, 22 A Dauer, HF-dicht, nur 1,5 kg, 51,--. Tel./Fax (0371) 221263

DC-Gleichstromwandler 12 VDC/230V/50 Hz AC, neu, original-verpackt, für Fieldday, Camping, Notstromversorgung usw. 1700 W-7,5 A, 25x11x49cm, 299,— (06701) 20 09 20, dj6ca@gmx.de

Fernschreiber T100 S (blaues Tischgehäuse) und FS T 1000. Tel. (0561) 8075415

FlexRadio Systems Software Defined Radios

FLEX-5000A 2.749,-FLEX-5000AT 2.999,-

RX2 (Zweitempfänger)

PowerMaster 3 kW 498,– AIM4170 Analysator 539,–

K9AY RX-System 359,-

Außerdem liefern wir u.a. Produkte von:

OMNI VII

2.598,-

Orion II

3,998.-

Beide Transceiver auch als Versionen mit eingebautem ATU lieferbar! OMNI VII AT 2.848,-Orion II AT 4.298,-

Wir führen das komplette Ten-Tec Programm

– auch andere Transceiver, die Empfänger und

info@appello.de www.appello-funk.de

die KW-Endstufen!

Antennen von

6-m-Yagis 5 Elemente

6 Elemente 219,-7 Elemente 269,-

149,-

2-m-Yagis

8 Elemente 109,-12 Elemente 149,-

16 Elemente 199,-

INFFID

z.B. Filter für FT-817/ 857/897: 300, 500, 2000 und

2500 Hz je 125,-2300 und 2900Hz

je 145,-

SSB- und CW-Filter für fast alle Transceiver lieferbar!

Communication Systems Rosenberg e.K.

AT-2K

Marienbader Straße 14 a, D – 61273 Wehrheim/Taunus Telefon (0 60 81) 5 93 93, Fax (0 60 81) 98 0271 e-mail address: gagacom@aol.com

160 m bis 6 m. symm./asymm. Anpassung, "echte" P.E.P.-Messung & Hold-Funktion geringe Abmessungen 7

8-Band-Audioequalizer mit Noise-Gate www-W2IHY.com

EQplus regelbarer Kompressor, regelbarer Downward-Expander, optische Limiter-Anzeige etc.

sofort lieferbar!

DL-1500 Lastwiderstand 1 kW Dummy-Load für Kurzwelle

Antennentuner

NEU Antennentuner für symmetrische/unsym-

metrische Antennen, 160 m bis 6 m "echte" P.E.P.-Anzeige mit Hold-Funktion,

PM 2000A & PM 2000AM

Kreuzzeiger-Wattmeter, echte P.E.P. & Peak/Hold

BT-1500A

Nur "zwei" Bedienelemente für 1500 W. symmetrischer Tuner mit Doppelrollspulen, 160 m bis 10 m. Kreuzzeiger mit P.E.P-und Hold-Anzeige

Original gaga® Für Service, Labor & Abgleich mit zuschaltbarem Digitalfilter

VECTRONICS »584-B« Antennen-Analyser ANGEBOT:

mit Dipperspulen und DL-Handbuch

Besuchen Sie uns unter: www.vectronics.de · www.gagacom.de · www.palstar.de

a

Markeninhaber: W. Rosenberg VECTRONICS

Funk & Amateurfunk

R-327 Universal-RTTY/FS-Tastgerät für R-250M u. a. mit dt. Frontplatte, aus NVA-Bestand, sehr 150,-. Tel. (04941) 5934, guter Zustand DL9BDM@darc.de

RFT-Schwanenhalsmikrofon DM 2417N, nagelneues, noch originalverpackt, 35,-. Tel. (0172) 830 89 20, DH3FEN@darc.de

Heil-Mikrofon HM-I für alle gängigen Transceiver, umschaltbare Kennlinien, incl. Originalverpackung, UFB Zustand, incl. Ersatz-PTT-Taster. FP 120,-. Tel. (09524) 301934, dg8ncy@darc.de Yaesu SP-102, einwandfreier Zustand, 75,-. DK9KK@gmx.de oder (0221) 5999614

Stationslautsprecher YAESU SP-902 für die FT-901/101 Line, gebraucht, 50,-. sybastian@ amx.de

Sprechgarnitur Heil Traveler mit Adapter für FT-817, ungebraucht, 70,- (NP 130,-). Tel. (09802) 1822, E-Mail f.meierhoefer@arcor.de

Duplexer für Autoradio und 70-cm-Funk, Kathrein Typ K 632721, 20,-. (0172) 830 89 20, DH3FEN@darc.de

HP-Oszilloskop 180A/1801A/1821A, Zweistrahlger., DC bis 50 MHz, dt. Betriebsanl., 5 Tastköpfe, stab. Rollstativ., Gerät länger außer Betrieb, Biete alles geg. Gebot. Tel. (040) 33425952 oder Serov@vahoo de

Digitales Leistungsmessgerät von Array Solution Power Master 3KW Ausführung inkl. Leistungsmesskopf 1.5 kW für 144 MHz (für KW gibt es separate Messsensoren zu kaufen). Zustand wie neu; Neupreis 558,-, Kaufdatum bei appello Dez. 07. Abgabe gegen Gebot an dk5ew@darc.de oder Tel. (0151) 23326313

Wobbelgenerator WOG 2206 von Playtronic gegen Gebot abzugeben. f.meierhoefer@arcor.de

Scopemeter DMM750, siehe auch Artikel/Software im FA 2/2005, Gerät neu und originalverpackt, 140,-. (0171) 4074510, verkauf@dk9ip.de

SWR-Messbrücke Typ M2 für Breitbandmessung im Kleinsignalbereich. Frequenzbereich 1-1500 MHz. Impedanz 50 Ω, N-Anschlüsse, Richtschärfe bis 500 MHz 40 db. 1000 MHz 25 dB, 150,-. (030) 6940305, DF2YQ@vahoo.de ELV-Messsender HFG 9300, 10-300 MHz, mit Oberwellen bis 900 MHz gut zu gebrauchen. 4-stellige Frequenzanzeige, AM/FM-Modulation int. 1 kHz, ext. Mod.-Eingang, Pegel –60 bis 0 dBm, sauber aufgebaut, VHB 150,-. (05732) 82402, h.j.karius@gmx.de

NWT-7 Netzwerktester bis 85 MHz, log. Detektor mit dem AD8307 und schaltbares Dämp-fungsglied bis 50 dB eingebaut, Anschluss für 2 zusätliche Detektoren, 149,–. Tel. (05121) 511142, E-Mail dl5oas@t-online.de

Racal Dana 9303 True R.M.S. R.F. Level Meter, digit. HF-Millivoltmeter von 10 kHz bis 2 GHz, gut erhalten, 333,-. (0151) 12107017, DK5AF @darc.de

Dim 7000, Dcm 7000, FZ 7000 von ELV gegen Gebot abzugeben, si.eberle@gmx.net

"Kompetent Ihre Nummer Eins! A 🗨 🔣

100kHz-1,29GHz, AM, WFM, NFM, CTCSS,DCS 1000 Speicher, TCXO, 2 VFO

AR-8200DX

100kHz-3GHz. ALL MODE. 3001 Speicher, TCXO, PC-Schnittstelle

AR-8600DX

100kHz-3GHz. ALL MODE, 3001 Speicher, RS-232, kompl. Schnittstellenbeschr

Funkanlagen GmbH Grundesch 15 D-88326 Aulendorf

BOGERFUNK SCHWEIZ Bahnhofstraße 4 CH-8590 Romanshorn

faxen +49 (0)7525 2382 Email info@boger.de sehen www.boger.de

Wir sind für Sie da von: Mo-Do: 7.00-17:30 Uhr Fr: 7:00-16:00 Uhr

durchgehend geöffnet, täglicher Versand

EINZIGE authorisierte

AOR-Werksvertretung

im deutschsprachigen Raum!

SR-2000A

Panoramasichtgerät. 25kHz-3GHz. FFT-Suchfunkt. bis 10MHz in 10 sek

SDU-5600

Panoramasichtgerät zum Anschluss an Empfänger mit 10.7MHz ZF, 5" Farbdisplay, DSP, Sampling-rate 6xSek., PC-gesteuert

ARD-9800BO

Von Analog zu Digital - OFDM-Verfahren Modem für digitale Sprach-, Text und Bildübertragung

- Kompetentes Fachpersonal
- Modernste Technik in der
- Auftragsabwicklung Durchführung von Modifikationen
- Innovationsfreudig
- Systemdesign für Funkaufklärung
- Deutsche Handbücher
- NEU! Demnächst ISO-9001 zertifiziert!

Rufen Sie uns an, Wir beraten Sie gerne!

Von Analog zu Digital - OFDM-Verfahren Modem für digitale Sprachübertragung

ARD-9000DX

Diskone-Antenne 75MHz-3GHz, max. Sendeleistung: 50 Watt

10kHz-500MHz, kompakte aktive Loop-Antenne

SA-7000 (ohne Abbildung)

Passivantenne mit 2 Strahlern Kurzwelle 30kHz-30MHz, Breitband 30MHz-2GHz

Über 30 Jahre Erfahrung und Kompetenz

WiMo-Yagis 2 m ... 70 cm

- · Faltdipol mit Teflon-Balun im Anschlusskasten, N-Buchse, kalt
- verschweißt und zusätzlich ausgeschäumt Elemente 8 mm dick aus Alu, hohe Bandbreite große Leitfähigkeit, geringe Verluste. Mit dem Boom verschraubt, hohe Kontaktsicherheit auch nach Jahren!
- Kreuzyagis mit Boom aus Rundrohr, kein Unterzug, super Richtdiagramm! Anschlussfertige Phasenleitungen lieferbar.

Modell	Frequenz	Ele.	Gew.	Länge	Preis
WY 204	2 m	4	7	1,2	63,00
WY 207	2 m	7	10	2,6	74,00
WY 208	2 m	8	11,4	3,8	91,30
WY 209	2 m	9	12,4	5	106,20
WY 214	2 m	14	15	9,9	211,00
WX 208	2 m	2x4	7	1,3	98,20
WX 214	2 m	2x7	10	2,6	125,20
WX 220	2 m	2x10	12,3	4,6	146,70
WX 228	2 m	2x14	18	10,0	296,50
WY 706	70 cm	6	8	0,75	72,20
WY 7010	70 cm	10	11,5	1,6	76,70
WY 7018	70 cm	18	14	3,1	100,50
WY 7023	70 cm	23	15	4,2	113,90
WX 7020	70 cm	2x10	11,5	2	125,20
WX 7036	70 cm	2x18	14	3,4	146,70
W 3000	Duoband	3+5	5/8	1,4	129,80
18250	D-Netz	5	7	0,6	85,00
18251	D-Netz	12	12	1,0	116,00

Präzisions-Yagis SHF-Design 23...13 cm

- Faltdipole mit Semirinid-Balun und Teflon-N-Buchse. dicht vergossen!
- Mehrfachreflektor für hohes Vor-/Rückwärtsverhältnis, wichtig für SAT und EME!
- Einfacher Aufbau: alle Elemente und Reflektor bereits montiert! Dipol, Reflektor und Unterzug anhauen fertin!

SHF 2328 23 cm 28 15,4 1,6 130,30 SHF 2344 23 cm 44 18,1 3,0 156,00 SHF 2367 23 cm 67 19,9 5,1 189,80 SHF 1340 13 cm 40 16,6 1,6 133,40 SHF 1367 13 cm 67 20,0 3,0 203,00	Тур	Frequenz	Ele.	Gew.	Länge	Preis
	SHF 2344	23 cm	44	18,1	3,0	156,00

- Elemente Alu, kein Edelstahl: geringere Verluste
 Teflon-Balun wetterfest lackiert und vergossen
- Schrauben, U-Bügel aus Edelstahl!
- ausführliche deutsche Anleitung
 deutsche Produktion, keine Ersatzteilsorgen
- alle Teile geschraubt, keine Klammern od. Plastik
- 8fach-Reflektor
 qutes Vor- und Rückverhältnis

Flachantennen für Afu, UMTS. DECT und WLAN

Wetterfest gekapselt, N-Buchse,	
Mastschellen, teilweise auch neigbar	Two and
70 cm, 7 dBd, 44 x 44 cm 97,50	
D-Netz, 10 dBd, 21 x 21 cm 132,40	
23 cm, 10 dBd, 21 x 21 cm	71,30
23 cm, 16 dBd, 46 x 46 cm	140,60
E-Netz, 10 dBd, 21 x 21cm	
E-Netz, 15 dBd, 44 x 44 cm	. 153,90
UMTS, 14 dBd, 25 x 25 cm	. 101.50
WLAN/13 cm, 10 dBD, 13 x 13 cm	
WLAN/13 cm, 18 dBD, 33 x 30 cm	
WLAN/13 cm, 20 dBD, 33 x 33 cm	

Helix-Antennen

Antennen in erster Linie für den Betrieb über Satelliten entwickelt, aber natürlich auch für terrestrische Funkverbindungen einsetzbar Vormastmontage Anschluss über N-Buchse, Impedanz 50 Ω, Edelstahl-Schrauben

Helix 13, Lg. 570 cm, Gewinn 14,0 dBd 100,50 Helix 13-40, Lg. 125 cm, Gewinn 16,0 dBd 122,00		Helix 13,		Gewinn Gewinn Gewinn Gewinn Gewinn	12,5 11,0 13,0 16,0 14,0	dBd dBd dBd dBd dBd	198, 59, 77, 141, 100,	00 50 00 60 50
--	--	-----------	--	--	--------------------------------------	---------------------------------	------------------------------------	----------------------------

Mastweiche

MTFT-Magnetic Balun

69.80

Mit einigen Metern Draht und maximal 150 W auf 50 MHz QRV! Setzt das extrem hohe SWR des Drahtes so weit herunter, dass dieser mit den üblichen, in den Geräten eingebauten Antennentunern oder externen koaxialen Tunern (MFJ, Pal-star usw.) angepasst werden kann. Montage direkt an der Antenne, Speisung über Koax, Ausgang: Schraubklemme**57,00**

dito, aber wasserfest im Mastvorverstärker-75.00

WiMo Antennen WIMO Antennen und Elektronik GmbH

Am Gäxwald 14, D –76863 Herxheim
Telefon (07276) 96680 · Fax (07276) 966811
e-mail: info@wimo.com · www.wimo.com
Alle Preise sind Barpreise zzgl. Versand

KLEIN

Funk & Amateurfunk

DRAKE-Wattmeter WV-4, keine Gebrauchsspuren, NR, 110,-. Tel. (06151) 376798, dl1zbo@ darc de

Dig. Leistungmessgerät Power Master von Array Solution, 3-kW-Ausführung inkl. Leistungsmesskopf 1,5 kW für 144 MHz (für KW gibt es separate Messsensoren zu kaufen), wie neu, NP 558, aa. Gebot. Tel. +49-151-23326313 dk5ew@darc.de

Selektives Mikrovoltmeter USU 1. Rohde & Schwarz, Frequenzber, 30–1000 MHz; Spannungsmessbereich von etwa 10 µV-3 V, komplette Originalunterlagen, 200,-. Tel. (039402) 51011, haensel.dl6cgc@t-online.de

HP 432A Powermeter mit HP8478B mit einem HP 8478B Powermesskopf 0,010-18 GHz, einwandfreier Topzustand, letzte Kalibrierung 2005 VB 210,-. (02339) 121172, k.drees@lycos.de

R&S Funkmessplatz SMDA, guter Zustand, mit original R&S Unterlagen, VHS, an DAH. Tel. (03935) 958039, hanskronen@alice-dsl.net

Bird Model 43 Wattmeter mit 5 Messeinsätzen 5 W, 10 W, 25 W, 50 W und 100 W, jeweils 200-500 MHz, 450,-. Tel. (0171) 4074510, verkauf@dk9in de

Microwave Power Sensor Marconi 6924, 250.-F5VAE. +33-3 87 95 62 68, karl.barth@neuf.fr

HP 8640B, Messsender mit Opt.01/02/03, Frequenz 1,1 GHz, 550,-. lukisimi@t-online.de

Sweep-Oszillator HP 8620B ohne Einschub, gegen Gebot. f.meierhoefer@arcor.de

Netzfilter Typ NFI, 220 V/880 W, Masse 0,8 kg, 25,-; Netztrafo 220 V/500 V, 100 VA, 30,-; Trägerfrequenz Pegelmesser Typ MV60 Clahmann&Grahnert, 200,-. Tel. (03491) 489801, ae37wb@freenet.de

Exzellente Mikrofone für Ihre Transceiver liefert mit Mic-Stecker, rund oder Western für Yaesu, Icom und Kenwood, Ihr Spezialist: www. eurofrequence.de, Dierking NF/HF-Technik, Tel. (06701) 200920

MWA 130, 230, 330 Hybridbreitbandverstärker bis 1 GHz, 14 dB, à 10,-; Dummy-Chip 50 Ω, 4 GHz, 90 W, 20,-; BFR94 3,5 GHz, 3,5 W, 10,-; Automatiklader für RL101, 401, 20,-; Lader Alan Porti 5,-; Handy Mot. C121, 139, à 15,-; BQME45, MT50, A55, M55, kompl. 15,-DL7AEH, Tel. (0160) 6074778

2-mal 4CX350A von Eimac zu verkaufen, gebraucht, aber geprüft. Tel. (04941) 8198, MarkusRichert@gmx.de

Leistungs-Zener-Dioden BZY91 C12, je 2,-. (05973) 96379, emlaufer@t-online.de

Röhren 6L6 oder 5881, neu, aus alter wertiger russischer Militär- Produktion (1974),originalverpackt und selektiert, insgesamt 22 Stück je 6,50. (069) 60324346

Wehrmachtröhren: 4 x RV12P4000, 1 x RV12 P3000, 2 x RL12T1,1 x RL12T2, je 8,-; Röhren: CY1, CF3, CF7, CL4, SRS552, je 5,-. DL2AZJ, Tel. (036601)40391

7 neue GS4B und 2 neue GU43B (m. Sockel) zu verk. Tel. (0431) 36896, E-Mail dl2ow@gmx.de

Scheiben-Tetrode von Tesla RE025XA, 29.-. dl1avx@t-online de

NPN 4 GHz Wideband Transistor BFQ136 für 23-cm-PA nach PA0VRE, nagelneu, Stck. 25,-DL2VIC, Tel. (08649) 986933 nur 18-20 Uhr, nospam2@gmx-topmail.de

Alter Lagerbestand: Trimmer Drehko mit 33 pF. 1 mm Plattenabstand, 5,-, mehrere vorhanden. (04106) 9958-0. radiolink@gmx.de

Zeilenendröhren: 4 unbenutzte russische EL519 zu verk. (04941) 8198, MarkusRichert@gmx.de

2 Drehspulmesswerke 110 x 80 mm Vollausschlag 30 V und 3 A, zus. 16,-. (02543) 4166, DF8YZ@t-online.de

20 stromkompensierte EMV-Ringkerndrosseln für Leiterplattenmontage, 2 x 6,8 mH bei einem max. Strom von 2 A und 250 Vac, zus. 15,-. (0172) 830 89 20, DH3FEN@darc.de

Fertig bestückte Relaisablaufsteuerung (VV, PA) nach DUBUS 1/87 zu verk. (04941) 8198, MarkusRichert@gmx.de

Besser hören, mehr hören, weniger Rauschen und "spitze Ohren" haben Sie mit dem neuen Universal-NF-Filter ED88NF mit ASP, super! ... sagen DX-, Contest- u. andere Technikexperten. Das tolle Filter gibts preisgünstig bei www. eurofrequence.de, Dierking NF/HF-Technik, Tel. (06701) 200920

FUNKAMATEUR 01/98 bis 12/05 an SAH. DH8AT@DARC.DE, Tel. (02244) 80179

FA-Jahrgang 2005 (12 Hefte), 12,- incl. Versand. Konrad.Schaemer@web.de

DVD komplette CO-DL Jahrgänge 1980-2007 zu verkaufen. Tel. (0731) 84949 nach 17 Uhr, dl1grt@darc.de

Operating and Service Manuals für Spectrumanalyzer HP-8558B (Original) und Mainframe HP-182T (gute Kopie), 35,-. DC4DN, Tel. (02306) 80869

59 Serviceblätter/Schaltbilder aller in der DDR bis 1967 gebauten Fernsehempfänger, zus. 80,schiller-harz@web.de

Elektronik/Computer

Digitalkamera JD10.0z3 EasyShot Jenoptik mit 10 MPixel, 3x opt./4x dig. Zoom, 2,4"-TFT, 6 NiMH 2,5 Ah (2 erf.), Ladegerät, USB/VGA-Kabel, Tragetasche + Schlaufe, Bedienungsanleitung, Software, 50,- inkl. VK. dk3red@grp4fun.de

SSTV, PSK31, EME, WSJT ... usw. mit Soundkarte u. ED 16 Mi! Bei www.eurofrequence.de, Dierking NF/HF-Technik, Tel. (06701) 200920, gibts das neue Interface ohne Brummen u. HF-Einstrahlung – anschlussfertig, für 2 Transceiver 4- oder 8-polig, rund oder Westernstecker. Komplett Ufb!

COLOR-VIDEO-KAMERAS (Typ XC 45B/320 Modulausführung, Norm PAL mit guter Farbwiedergabe, Wandler CCD-Chip, Auflösung ca. 400 TV-Zeilen,

Betriebsspannung 5 V stabilisiert, Normvideosignal 1 \dot{V}_{ss} an 75 Ω , Größe ca. 5,5 x 5,8 cm, Entfernungseinstellung von 8 mm . unendlich am Objektivring, bestens für Kontroll- und Beobachtungszwecke, von vielen OMs erfolgreich für ATV erprobt, Kamera auch als Mikroskop verwendbar z.B. zur Betrachtung von SMD-Bauelementen auf Leiterplatten, dabei Vergrößerung bis ca. 30fach (je nach Größe des Bildschirms), neu, originalverpackt, geprüft und mit Bed.anleitg. für 10,- plus Porto 2,20 €. Hartmut.Kuhnt@gmx.net, Tel. (035872) 32116

Biete Beleuchtungstisch 7cm dick mit Riesensichtfläche 55x37cm zum Betrachten von Platinenentwürfen, Röntgenbildern o.ä. von Fa. Rex-Meßinstrumente/Erlangen zum Verkauf oder Tausch. Tel. (0228) 9862900

NF&HF-Messgeräte. Radio- und TV-Röhren. Relais, Messinstr., Präzis.-Drehkos, Antriebe dazu, Netzteile, Trafos, versch. LEDs, auch mit Memm.), ICs für U-Elektronik, Werkzeuge, 19"-Gehäuse, alte Radios, HiFi-Tonband, präzis. Widerstände, Kofferradios, Fachliteratur, cqDL 2000/07, FA 2000/07, 2x KW-Antennen, Ge-Trans., lin. u. digit. ICs, auch für NT, Antennendrehko, Dreh- und Druckschalter u.v.m., bitte anrufen: (08142) 60853, DL3MBX@darc.de

COMPUTER mit Windows 95, 2C64 commodore mit RTTY Filterkonverter nach DJ6HP, ein Packet-Radio-Modem und ein CW-Morse-Modem für RX und TX mit Zubehör. VK-SAH-VS. Tel. (06435) 2104 oder (0152) 28676575

WLAN Cardbus Card: Siemens Gigaset PC Card 54, (IEE 802.11g), 10,-. dj2ev@darc.de

Toshiba Notebook Tecra 8100, 190,-. b-arnold @t-online de

Komplettsystem AMD 2400+, 1 GB, 120 GB HDD, FP 130,-. DL6ZZ@gmx.de

PC Mini ITX 1,5 GHz C7, Jetway J7F2WE Motherboard, 1GB DIM DDR2 RAM533, 1x TV Out, 1x LAN 10/100, 2x COM, 8x USB2.0, 1x IEEE1394, 4x ATA-133, 2x SATA, RAID, CD-ROM, 20GB 2.5 HDD, war in Betrieb mit einem SDR-1000 Software Defined Radio, zu verk. dl2arf@amx.net

TELEFUNKEN-Empfänger-Chassis, Typ T 512 WL, Empfangsbereich LW/MW, Röhren AF7, RES964, RGN1064, mit Schaltbild, Skaleneinheit, Rückwand, jedoch ohne Gehäuse und Lautsprecher, funktionsfähig, VHS. Tel. (06151) 376798, dl1zbo@darc.de

Spulentonbandgerät TK 246 HiFi (Grundig) inkl. div. Bänder, VHB 180,-. Tel. (09190) 1413

Musiker/Disco-Endstufen, alle Stereo, immer defekt, 19 Zoll, 2x400 W o.ä. zum Selberreparieren oder Ausweiden, Stück 80,-. Tel. (0241) 871263, info@hosin.de

HDTV Receiver Pace DS 810 KP, bestens geeignet auch zur Übertragung von HDMI-HDČP-Signalen (kopiergeschütztes HDTV) auch an schwierigen HD-Fernsehgeräten. Geeignet sowohl für Pay-TV, mit Premiere-Zulassung und -Kartenleser, mit CI-Slots für andere Pav-TV-Systeme, als auch für Free-TV z.B. Arte HD, 150.-. DL2MCD@amx.net

DVB-T-Empfänger: SL DVB-T220, Details u. Foto: www.presseinfos.de/sl/data/dvbt220DVB-T_ 220.pdf, wie neu, ca. 15 Stunden gelaufen, 23,-(Hermes-Paket), Auschluss der Gewährleistung. dh8ag@darc.de

Verk.: METRA Universalmessbrücke E 316 (0,1 . 10 MΩ, 100 μH ... 10 kH; 10 pF ... 1000 μF, isol. Messung 10 M Ω ... 10 G Ω , Batterie- u. Netzbetrieb) kompl. m. Doku. für 44,-; RFT PRÄCITRONIC Tonfrequenzgenerator GF 22 (2 Hz ... 20 kHz in 5 Teilber., digitale Einst. der Ausg.sp. 5 μV ... 10 V m. gr. Genauigk., sehr kleiner Klirrfaktor) kompl. m. Doku für 48,-; STATRON stabilis. Labor-Stromversorg.gerät Typ 3203 (0....30 V/10 A, Spannungs- u. Stromregelung, eingeb. Instrumente f. Spanng. u. Strom, m. Doku. für 65,-; Schutzprüfer NES 1/62 zur Prüfung von Erdung und Nullung in 220/230-V-Netzen über den Schleifenwiderstand, mit Doku. für 10,-; RFT MTM Isolationsmesser ISO 61 (Mess-Sp. 500 oder 1000 V, 0...1000 MΩ, Kl. 2,5) m. Bed.-Anl. für 22,-RFT PRÄCITRONIC NF-Pegelmesser MV 73 (30 Hz ... 20 kHz, 0,3 mV...10 V bzw. -70...+20 dB, Batterie- u. Netzbetrieb, handl. Größe) für 30,-. Suche: Netzregler NR 320, techn. Unterlagen für Imp.Gen. TR-0313, TR-0465 u. Prozessor TR-04910/9, auch leihweise geg. Kostenerstattung. Hartmut.Kuhnt@gmx.net, Tel (035872) 32116

ANZEIGENSCHLUSS für Ihre private Kleinanzeige im FA 3/09 ist am 9.2.2009 9 kHz ...1,8 GHz
 9 kHz ...1,8 GHz
 10 kHz -..1,8 GHz
 10 kHz
 Kenwood

Weitere Endstufen am Lager!

Als Vertragshändler von **ICOM** KENWOOD und YAESU

Gebrauchtgeräte werkstattgeprüft mit Gewährleistung!

führen wir deren Sortimente. Damit es für unsere Kunden einfacher wird, sich einen Wunsch zu erfüllen, nehmen wir Ihre gebrauchten Geräte gern in Zahlung.

FTM-10E: Duoband-Mobil-Transceir für 2 m/70 cm, 50/40 W HF, AM/FM-Rundfunkempfang, Bluetooth option wasserdichtes Bedienteil FTM-10SE: dto. als 10-W-Version

Selbstverständlich kaufen wir Ihre Geräte auch an. wenn Sie kein neues Funkgerät bei uns erwerben. Bitte rufen Sie uns an. Bei Bedarf lösen wir ganze Stationen schnell und fair vor Ort auf.

Als Vertragshänder führen wir auch Neugeräte von ICOM, Kenwood, Yaesu...

Peter-Henlein-Str. 5, 89331 Burgau Internet: www. haro-electronic.de Telefon 0 82 22/410 05-0 · Fax · 56 e-mail: info@haro-electronic.de

KLEIN

UKMberichte

Automatik-Antennentuner CG-5000, bis 800 W für 500,- zu verk. oder gg. andere Amateurfunkartikel zu tauschen. Tel. (02302) 760244, DC9YC@gmx.de

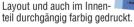
Tausche YAESU FT-450, DSP-KW-TRX, gekauft bei Dathe, aktuelle Firmware aufgespielt, wie neu, ohne Zuzahlung meinerseits gegen ICOM IC-706MK2G, IC-747, TS-480 oder IC-E2820E mit D-STAR-Modul. dg9sr@web.de

Ihre privaten Kleinanzeigen veröffentlichen wir im FUNKAMATEUR zum Pauschalpreis: Bis zu einer Länge von 10 Zeilen kostet jede Anzeige ganze 5 €

KLEIN

Gebrauchtgeräte An- und Verkauf mit Übergangsgarantie Haro-electronic, Tel. (0 82 22) 41005-0

SGA 4586, MMIC gesucht. (06821) 53658 oder dj2dy@web.de


Netzregler NR 320, techn. Unterlagen für Imp.-Gen. TR-0313, TR-0465 u. Prozessor TR-04910/9, auch leihw. geg. Kostenerstattung gesucht. Hartmut.Kuhnt@gmx.net, Tel. (035872) 32116

Suche alte Funkfernsteuerungen für Flug- und Schiffsmodelle (Sender, Empfänger, Rudermaschinen, Literatur), z. B. RIM Boss, Stegmaier St 8K, OMU, Multiplex Digitron, WEBRA PICCO, Graupner Bellaphon, telecont, Graupner Variophon, Metz mecatron. H. Grosch, Im Ölfeld 5, 29336 Nienhagen, tector@web.de

jetzt in Farbe!

Die funktechnische **Fachzeitschrift** ..UKW-Berichte" erscheint jetzt in neuem Outfit

Im diesem Jahr erscheinen die "UKW-Berichte" im 49. Jahrgang und im 2. Jahr im neuen Layout. Die 2008er-Ausgaben sind bereits im neuen Layout und auch im Innen-

- höherer Informationsgehalt der Farbbilder gegenüber s/w-Bildern
- farbig abgesetzt, dadurch bessere optische Gliederung
- auf jeder linken Seite wird in der Kopfzeile der Name des Autors und der Titel des Artikels wiederholt
- neuer Schriftschnitt für leichtere Lesbarkeit des
- Tabellen und Stücklisten sind farblich hinterlegt Der Preis für das Abo 2009 (4 Ausgaben) liegt

unverändert bei 22,-€ inkl. Versand im Inland (Ausland 24,-€)

Fordern Sie noch heute ein kostenloses Probeexemplar an!

Fachversand für Funkzubehör

Eberhard L. Smolka · PF 80 · D-91081 Baiersdorf Tel. (09133) 7798-0, Fax (09133) 7798-33 info@ukwberichte.com · www.ukw-berichte.de

in liefena zu p-Pneisea ...

Yaesu, Icom, Alinco, Kenwood, Diamond, Fritzel, SGC-Tuner, LDG-Tuner, MFJ, Daiwa, Ameritron, Netzteile bis 120 A sowie alle Aircell/Aircom-Kabel und das notwendige Zubehör.

Weitere Artikel auf Anfrage.

Alle aktuellen Preise, Neuheiten und Verfügbarkeit finden Sie immer aktuell auf unserer Webseite:

www.funktechnik-Grenz.de

oder Anruf oder Fax genügt.

Inh. Stephan Grenz, DG4ZE Lahnstraße 15 A · 35091 Cölbe Tel. 0 64 21 - 87 11 95 · Fax 0 64 21 - 87 11 96 Mail: funktechnik-grenz@t-online.de

Handbuch Kurzwellenempfänger

Th. Riegler, 2008, 128 S. S-9999 18.80

Das LiPo-Buch U. Passern, 2008, 56 S. 61 Abb., 16,5 x 23 cm V-7814 9.90

6 Meter Handbook D. Field, G3XTT, RSGB, 2008, 176 S. R-6474

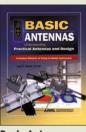
ARRL-Kalender 2009

Dekorativer Wandkalender für Sammler und Liebhaber. 13 Blätter (1/09...1/10) mit Fotos historischer Funkgeräte. Format ca. DIN A4, Fotos: K90C0 AK-2009

OST, OFX und NCJ des Jahrgangs 2008 auf einer CD PDFs mit Suchmaschine als preiswertes Archiv.

HANDBOOK

ARRL Handbook 2008 Die aktuelle Ausgabe des


"dicken" Standardwerks aus den USA, mit CD A-1395A Sonderpreis

für Abonnenten

FUNK **FUNK FUNK**

FUNKAMATEUR-Jahrg.-CD 2008 Alle 12 Hefte aus 2008 als PDF und die Software zu den Beiträgen, soweit diese frei verfügbar ist

FCA-08 Sonderprei unsere Abonnenten 10,-

Basic Antennas J. R. Hallas, W1ZR, 2008, Antennen konzipieren und bauen, 216 Seiten

Wie und wo bestellen?

Senden Sie einen Bestellschein oder eine formlose Bestellung per Post an: FUNKAMATEUR-Leserservice Box 73 Amateurfunkservice GmbH

40.-

Berliner Straße 69, 13189 Berlin Telefonisch über die (aus dem deutschen Festnetz) gebührenfreie Bestell-Hotline (0800) 73 73 800
Telefonisch aus allen anderen Netzen (030) 44 66 94 72
Fax (030) 44 66 94 69

E-Mail shop@ funkamateur.de

Internet www.funkamateur.de > Online-Shop

Versandpauschale Inland 3,90 Ab 50,– Warenwert bei Bankeinzug versandkostenfrei. Versandpauschale Ausland immer 5.90

änderungen infolge Wechselkursschwankungen sowie Irrtum und Zwischenverkauf vorbehalten

FA 2/09 • 197

GESTICHTI

HEATHKIT "GC-1A" (Mohican), SONY "CRF 1" ZENITH "Royal 1000/2000", Geräte von LA-FAYETTE, COLLINS usw. – Reporter-Tonbandgeräte: NAGRA/STELLAVOX, GRUNDIG "TK-1 "Nostalgie"-Kofferradios: AKKORD BLAUPUNKT, SABA, BRAUN, KUBA, KÖRTING GRAETZ, INGELEN, WEGA, ZENITH usw. – Geräte von DYNACORD, DUAL, EMT usw. – Mikrofone: NEUMANN. SHURE. SENNHEISER usw. -Kataloge/Geräte/Technik/Messgeräte der 50er-, 60er- und 70er-Jahre. - Baupläne/Bausätze/Ka taloge/Material von RADIO-RIM & EURATELE. - Barzahlung, Offerten unter: COSMOS AG Postfach 40, CH-9050 APPENZELL, Tel. 0041/ 41 311 22 30, Fax 41 311 16 30 (gewerblich

Yaesu FR-101 (Digitalausführung) und SP 101PB gesucht. Tel. (0561) 8075415

Heathkit HW-8/HW-9: Gerät. Bausatz. unvollendeter Bausatz oder auch defektes Gerät DK6AO, oldradio@web.de, Tel. (05321) 80000, nach 18 Uhr

Allmode-TRX für 2m/70cm/23cm, wie IC-910H mit 23-cm-Unit, Anpasstopf für 2x70 cm-Ant., neuwertige F9FT-19el. 70cm von Tonna. Tel (035341) 94483 od. DM3HA@darc.de

Leader LSW-251, Swemar Generator, Gerät und Unterlagen gesucht (Schaltplan, Bedienungsanleitung etc.) df8se@vfdb.net

Schaltbild für Oszilloskop Gould OS 4100. (071311) 74489

Original-Yaesu-FT290RII-Service Manual (Technical Supplement) leihweise zum Kopieren. Bitte keine CD anbieten! Tel. (07306) 34208, DF9TX @darc de

Schaltplan für Yaesu-Mikrofon MD 100A8X. Tel. (0177) 8947441, vdsago@nefkom.net

ICOM IC-765: Geber für VFO-Abstimmung -Mechanik und Elektronik, iedoch ohne Knopf ges. DJ4EY@darc.de, (02902) 33 46

Geschäft/täglicher Versand/Service Mo-Fr 9-12.30 und 14.30-17.30 Sa 9-12, andere Zeiten nach Vereinbarung Tel. (03443)302995, Fax 239645 info@firma-kct.com

www.firma-kct.com

Ihr AFU-Händler in Sachsen-Anhalt!

IC-E91	296,- IC-706 MK2G	- call -
MFJ Kopfhörer	33,- IC-74000	- call -
IC-7700 nagelneu	- call - IC-E2820 neu	- call -
IC-7200	925,- IC-R8500	2075,-
IC-RX7	265,- FT-450 AT	- call -
IC-7000	- call - IC-718	597,-
IC-910	- call - TH-F7E	- call -
FT-857D	- call - TS-2000	- call -
FT-950	- call - IC-703	639
		,

Beachten Sie bitte auch die Preise für gebrauchte Geräte und Sonderangebote auf unserer Homepage. Service in eigener Werkstatt **EMTRON-Vertretung für EU**

Unser Web-Shop ist im Aufbau. Wir freuen uns auf Ihren Besuch und Ihre Anregungen/Kritiken.

> Im Kundenauftrag: **GD84NF, MFJ-1048** SP-31, PS-55, IC-7400, **Emtron DX-2**

Dietmar Lindner DL2HWA/DLØKCT Heilandsberg 4 06667 Uichteritz

Kenwood Mikrofon MC-47 (Originalmikrofon zum TS-50). Tel. (0171) 5425617, do1flh@gmx.de

TS-480 bis 600,- oder TS-2000 bis 1000,- ges. Tel. (0176) 96660846, suchegeraet@t-online.de

Morsetasten ieder Art für meine Sammlung. alte Klopfer, halbautomatische Tasten, Schlackertasten, Wabbler, Morseschreiber, Morseübungsgeräte u. Ä. DL8YTM@darc.de

Antennentuner Palstar AT 1500BAL, Tel. (0171) 5425617 do1flh@amx de

Transceiver und Zubehör der Firma SWAN ges. dq4jj@gmx.de

Schaltbild des SWAN-Monobander MB40. da4ii@amx.de

Drake MN75 Antennentuner. Tel. (030) 8222994, wolfganghenninger182@hotmail.com

Morsetaste MT 50 von RFT. de1lme@darc.de Suche für Antennenverteilersystem AVV01 Bau-

gruppen AVV01K, AVV01LMK, AVV01S u. AVV01N sowie Baugruppenträger. de1lme@ darc.de

YAESU FT-950 oder FT-2000. Tel. (0176) 48242622, dl2hdk@gmx.de

LDG ALK-2 NF-Umschalter oder Ähnlichen. dd7zg@hotmail.com

Programmiergerät für YAESU FTL-7002 ges., auch leihweise. Tel. (05121) 296272, DIRADO@ htp-tel.de

NVA-319 Lautsprecher für NRD545. Tel. (02472) 804920, legrossi@t-online.de

PA Alpha 91, 99, 87 ges. Zustand egal. (01577) 4320650 oder dk5tx@gmx.net

Icom-Lautsprecher SP-23 oder SP-21. stef111

70-cm-Modul für FT-726R ges. Tel. (0621) 473298, H.J.Fromm@web.de

Icom SM-6 oder SM-5 ges. (01577) 3932088, db3sv@amx.de

Display für TM-V7 gebraucht oder neu ges. DL5QV,(0251) 249711, margoha@t-online.de

PA für 432 mit GS31b, 70-cm-High Power PA LIG 70 * 50/800 mit GS31b LIG 70 * 100/1000 der Fa. AMPLITEC (HA8UG) oder Ähnl. ges. DG1VL@darc.de

9-cm-Transverter, DB6NT, ab G2 ges. (02104) 53878, dxj6jj@t-online.de

BX-190 DV-Adapter Platine/Bausatz für D-STAR aus FA 7/2008 mit oder ohne UT-118 ges. dg1nfs@datenfunk.org

Sendemodul für Teleport 10/160 aes. DJ7CF. (05673) 4458, hstrack@t-online.de

Batterie-Leergehäuse BT-6 für Kenwood TH77E ges. (039402) 51011, haensel.dl6cgc@ t-online de

Kenwood DTMF-Mikrofon MC-45DME oder MC-53DM in ufb. Zustand ges. (0541) 9619105. do6np@darc.de

PR430 Packet-Radio-TRX in jedem Zustand. auch mit def. Endstufe gesucht. Tel. (0179) 4250404 (Mailbox), dg1nfs@datenfunk.org

NEU Wetterstationen bei

phillipping (WiMo

Absolut präzise Wetterstationen, alle Geber einzeln kalibriert und vorgealtert, wesentlich genauer als der Baumarkt-Kram. Direkt in APRS QRV mit TM-D710 oder WX-Trak, serieller Anschluss für PC. Langzeitspeicher für Extremwertbetrachtung. Wetterfahne mit Anemometer (12 m Kabel) und ein Außentemperaturfühler (7,5 m Kabel) im Lieferumfang Optionaler Niederschlagsmengenmesser (12 m Kabel) anschließbar. Für Ultimeter 800 und 2100 auch Messung der Luftfeuchte und Außentemperatur möglich.

100 800 2100

Windgeschwindigkeit Windrichtung VV0000VV Windchill Luftfeuchtigkeit außen Luftfeuchtigkeit innen Taununkt Temperaturindex Temperatur außen Temperatur innen Luftdruck ŏ 0 0/// Regenmenge Alarmfunktion Steuerausgang Alarm für APRS verwendbar serieller Datenausgang "Weather Text"-Format "weather lext -romat beleuchtete Tastatur blaues, hintergundbe-leuchtetes LC-Display Option

mit TM-D710 Regensensor 90,00 Feuchte-/ Temp.-Senso für ÜLTIMETER 800/2100 111,00 Innentemperatur-Sensor für ULTIM. 100 **12,00** Single Cable Kit, Außenbox für Sensoranschluss, nur 1 Kabel nach drinnen 50,00 ULTIMETER-Datenlogger

für Windows XP 80.00 SCF-00400 ULTIMETER-Datenkabel für TM-D710 9.00

ULTIMETER 2100 296,00

WiMo Antennen und Elektronik GmbH WiMo Am Găxwald 14, D - 76863 Herxheim · Telefon (07276) 9 66 80 · Telefax (07276) 9 6 68 11

1k2-TNC (TNC21S, TNC2-C o. Ä.) gesucht. dk5tx@amx net

PK-232 Kabel vom PK-232 zum TRX ges. hans-gerhard-hoffmann@t-online de

Kleine Matchhox für 100 W auf 16-30 MHz mit symmetrischem Ausgang ges. Tel. (07121) 55331. rolfd.kiefer@amx.de

Antenne 2M12 von M2 ges. Tel. (036336) 56521, DH8WG@T-online.de

SAH sucht Versatower 18 m, BP60SX o. Ä. dl7io@darc.de, Tel. (0151) 10865451

WARC-Groundplane GPA-303 für 10/17/24 MHz, auch reparaturbedürftig ges. Selbstabbau/Selbstabholer in Nordbayern möglich. Tel. (0174) 4518009, dk8af@online.de

Kathrein Antenne K75 16 211 oder K75 16 221 (70 cm) ges. dk1bh@web.de oder Tel. (0175)

Balun 1:4 ges. (0234) 260958. dl5dck@gmx.de

LDG Z-11 Pro Antennentuner gesucht. dl4eax @darc.de

Digital platine oder Firmware prom (auch als Hex-Datei) von Keithley 199 System DMM/ Scanner des. DJOVO. gedonk@web.de

Funkmessplatz von R&S oder Schlumberger ab CMT bzw. 4039 ges. (02151) 1506560

Lautsprecher Wigo PM95/19CB, 5 Ohm, 4 W, oder Holmberg 1299A1, 6 Ω, 1 W ges. +49-162-3486931, peter.nolte-nolte@web.de

HF-Generator für 27 12 MHz oder 13 56 MHz gesucht. Leistung mehrere Kilowatt für Plasmaerzeugung möglichst komplett mit Stromversorgung. kud-bs@t-online.de

Frontnlatte vom Mittelwellenemnfänger Cäsar ges. DL2XM, (08106) 22463, steinerdieter@

Sammler sucht TeKaDe Uhrenradio WKZ 065. DL7RK@darc.de

Unterlagen über Prüfgerät Nr. 40 (DBP / für Fernmelde-Übertragungen). dj7lv@tele2.de, Tel. (05355) 91660

Kenwood Micro MC43s ges. (05223) 130711, DI 3YFF@darc de

Datong HF-CLipper ges. DM2AUJ@zigann.de

Semi-Rigid-Kabel 6,4 mm dick ges. 2 x etwa 50 cm mit SMA-Steckern. Tel. (0041) 419310909, hb9iaw@bluewin.ch

Kopie oder PDF-File von einem Manual für den MINIX MR-73 ges. hajoempel@t-online.de

R&S EK07D-Leergehäuse ges., evtl. auch alternatives 19"-Gehäuse in den passenden Abmessungen (Höhe 305 mm, Tiefe min. 470 mm), judd@amx.net

Ladegerät für Bosch HFG41/ HFG81/ HFG 161/ HFG451/ FuG10/ HFG10/ FuG13/ HFG13 ges. dh0sbw@gmx.de

Programmieradapter (Storno 6000) für Motorola Staccato, Software vorhanden. Ggf. Bauplan. db6vs@t-online.de

Ten-Tec Argonaut II oder Delta II ges. Tel. (0202) 451774, winfried.schilke@versanet.de

QRP 4-S von Reinhard Schindel, Bausatz oder Fertiggerät, ges. HeikoKaletta@t-online.de

Transistoren MJF31C-NPN, MJF32C-PNP. Tel. (0391) 601195, 5201442-001@mdcc-fun.de

Drake MN 2700 und Katsumi Keyer MK-1024. Tel. (0561) 8075415

HLV 1100

20 W

1100 W

1000 W

-60 dBc

180-260 V

1.1 8

17 kg

3960.-

430-440 MHz

Neue Modelle PROFESSIONAL QUALITY MOSFET AMPLIFIERS

Vertrieh direkt üher BEKO ELEKTRONIK **Bernhard Korte** Am Längenmoosgraben 1 a 85221 Dachau Tel. 08131-27 61 70 Fax 08131-27 61 72 mail@beko-elektronik.de

HLV 750 HLV 1500 HLV 250 HLV 550 144-146 MHz Frequenzbereich 144-146 MHz 144-146 MHz 430-440 MHz 430-440 MHz Eingangsleistung 20 W 20 W 20 W 20 W 20 W Ausgangsleistung 400 W 780 W 1500 W 250 W 550 W 1-dB-Kompression 380 W 750 W 1480 W 240 W 500 W Oberwellen -70 dBd -60 dBc -60 dBc -60 dBc -60 dBd Ausgangs-SWR (max.) 1:1,8 1.18 1.18 1.18 1.1 8 Stromversorgung 180-260 V 180-260 V 180-260 V 180-260 V 180-260 V (50-60 Hz) Abmessungen 300 x 168 x 470 300 x 168 x 470 300 x 170 x 470 300 x 168 x 470 300 x 168 x 470 300 x 168 x 470 (BxHxT mm) 17 kg 12,5 kg 14 kg Gewicht 12 kg 15 kg Preis (inkl. 19% MwSt.) 1620.-2250.-

Die BEKO-Website ist umgezogen!

www.beko-elektronik.de

ANKAUF

Service-Unterlagen zum HV-Voltmeter von Rohde & Schwarz Typ URV4 einschl. Messköpfe ges. xlagorw@t-online.de

Suche für Hagenuk-Endstufe LV 80 eine Frequenzerweiterung von 20–10 m. Wer hat Unterlagen? Tel. (06433) 5383, dl1zaf@arcor.de

KLEIN VERSCHIEDENES

Gebrauchtgeräte An- und Verkauf mit Übergangsgarantie Haro-electronic, Tel. (0 82 22) 41005-0

Hilfe bei der Selbsterklärung! Erfahrener OM gibt Unterstützung gegen Erstattung der Selbstkosten. Tel. (03332) 23356; DM2BLE@darc.de

FUNK, CONTEST, FAMILIENFERIEN in UNGARN am PLATTENSEE, Privatstrand, 2 Appartements, 30 m Tower TH11DX + 3el 40 m. Anfrage Hausprospekt Tel. 003670-2768488, E-Mail ha9rt@ha9rt.hu

IOTA EU-098 Ostseeinsel Poel, ex IOTA EU098, komfortable Ferienwohnung, 2 bis 4 Personen, 55 m², direkt am Jachthafen, zu vermieten. Sonderkonditionen für Amateure. Anfragen unter Tel. (0 42 94) 670, Whasemann@gmx.de, Info: www. asl.net/di9kh

Die Geschichte des Volksempfängers

mit historischen Tondokumenten auf einer Audio-CD (55 Min.) Preis: 14 € + 2 € Versand Info: www.rundfunk-nostalgie.de Gerd Krause, Wagnerstraße 8, 26802 Moormerland, Tel. (0178) 9742601

Heathkit Manuals! Habe über 600 Stck. davon, alle kpl. mit Abgleich, Schaltplan u. Details. Ich tausche auch gerne. Versende 14 Listen kostenlos. Die Manuals sind zu haben bei Ernst Huber, Eisfeld 28, 85229 Markt Indersdorf, Tel. (0 81 36) 56 44, Fax (0 81 36) 22 96 45, E-Mail: huber_e@t-online.de, Internet: www.huber-manuals.de

Wer baut mir ein 2-m-Relais oder weiß, wie es geht? Tel. (0151) 56 00 80 70, Thomas-Reh@

Am Nordseedeich große FeWo (125 m²) Top-Ausst., für 3 Personen, Bad m. Sauna, tolle Küche, alles in ehem. Bauernhaus auf 7000 m² Grundst., fast Alleinlage, Haustiere erlaubt, Nichtraucher, KW und UKW vorhanden, Hausprospekt anfordern! NS 60,–, HS 70,–. Siehe auch www. nordseedeichurlaub.de Auch das Bauernhaus ist für 450 000,– zu haben, unweit St.-Peter-Ording. Tel. (04865) 1255

Funk- und Rundfunk-Nostalgie

Eine Zeitreise in die faszinierende Welt der Funk- und Rundfunkgeschichte. 100 Themen, 870 Fotos und Abbildungen, 140 originale Tondokumente und Musik der 1920er- bis 1950er-Jahre sowie 35 Kurzvideos.

Jetzt neu als Multimedia-DVD-ROM Preis: 17 € + 2 € Versand Info: www.rundfunk-nostalgie.de Gerd Krause, Wagnerstraße 8, 26802 Moormerland, Tel. (0178) 9742601

5th International Congress for Radio Astronomy 4,5,6 September 2009 in Heidelberg. Call for Papers! Teilnahme nach Anmeldung für Funkamateure möglich. Sprache English. erachq@aol.com www.eracnet.org

Am 7. März 2009 findet die 17. Funk & Computer Börse mit HAM-Meeting des OV Freising C04 in der Sportgaststätte Attaching am Sportpaltz 3 statt. (A92, Ausfahrt Freising-Mitte oder Ost). Einweisung auf 438,800 MHz. Einlass ab 9 Uhr, für Aussteller ab 7.30 Uhr. Tischreservierung bei OM Stefan Leuschner, DL2RJ, Tel. (08161) 62891, dl2rj@darc.de

F07 Gießen, F19 Wetzlar und die DL-QRP-AG: Einladung zum 2. Giessener Amateurfunktreffen (Gemütlichkeit, Erfahrungsaustausch, Information) im Zentrum Hessens. Samstag, 28.2., und Sonntag, 1.3.2009, Bürgerhaus Gießen, OT Klein-Linden, freier Eintritt und ausreichend Parkplätze, Programm

Wer kann helfen: Suche dringend Unterlagen für ein Display-Wechsel eines Scanners VR-5000 von Yaesu. Bitte melden, wer sich damit auskennt. Tel. (03603) 845282

Rotenburg/Wümme, 2. AFU-Flohmarkt am 2. Mai 2009 im Haus am Luhner Forst (Lent Kaserne, Flugplatz) Infos u. Anmeldung über DL4BBE, (04261) 63784 oder DB6ES (04266)

				~8
Artikel (Buchtitel, Typ o. Ä.)	Bestell-Nr.	Menge	Preis/St.	Preis
Versandpauschale: Inland 3,90 (Ab 100,- Warenwert versandkostenfrei, bei Bankeinzug schon ab	_{50,-)} Ausland im	nmer 5,90		
Summe				

Datum, Unterschrfit

Bestellschein Das komplette Lieferprogramm finden Sie auf www.funkamateur.de im Online-Shop.

zum Kopieren oder Ausschneiden

Am besten im Fensterumschlag versenden oder per Fax an (030) 44 66 94 69 bzw. aus dem Ausland an +49-30-44 66 94 69

Box 73 Amateurfunkservice GmbH FUNKAMATEUR-Leserservice Berliner Straße 69 13189 Berlin Deutschland

Besteller:	
Name, Vorname	Call (falls vorhanden)
Straße, Nr. bzw. Postfach	
PLZ, Ort	
Telefon- bzw. Faxnummer od	ler E-Mail-Adresse für eventuelle Rückfragen
Gewünschte Zahlungswei	
Gewünschte Zahlungswei	ise: nten in Deutschland, Österreich und der Schweiz)
Gewünschte Zahlungswei Rechnung (nur an Abonnei Bankeinzug Konto-Nr.	ise:
Gewünschte Zahlungswei Rechnung (nur an Abonnei Bankeinzug Konto-Nr.	ise: nten in Deutschland, Österreich und der Schweiz) BLZ sen in Deutschland (5,- Zusatzpostgebühren!)

Bücher für Funkamateure

Handbuch Kurzwellenempfänger

Je größer und in der Regel auch teurer der Welt- oder Kommunikationsempfänger ist, umso schwieriger wird es jedoch, dem Gerät Töne zu entlocken. Am Beispiel einiger Geräte zeigt der Autor Thomas Riegler, wie sie richtig zu bedienen sind und wo unerwartete Stolperfallen auftreten können.

Umfang: 128 Seiten Best.Nr.: 413 0065 Preis: 18,80 €

Solarstrom effizient nutzen

Die letzten Jahre haben einen rasanten Fortschritt in der Photovoltaik-Technologie mit sich gebracht. Angefangen von Kleinstanwendungen in Taschenrechnern und Radios, über Solaranlagen in Wochenendhäusern oder im Wohnmobil bis zur netzgekoppelten Solaranlage auf dem Hausdach.

Umfang: 112 Seiten Best.-Nr.: 411 0147 Preis: 17,50 €

Frank Sichla

Empfangsprinzipien und Empfängerschaltungen

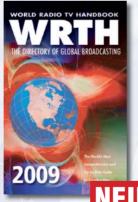
Das Buch zeichnet diese anhand der Empfänger-Schaltungstechnik nach, und zwar mit den Schwerpunkten Hör- und Amateurfunk. Im Vordergrund steht der experimentelle Selbstbau auf Grundlage von erprobten Schaltungen mit leicht beschaffbaren Bauelementen.

Umfang: 136 Seiten Best.-Nr.: 411 0142 Preis: 15,50 €

Frank Sichla

ABC der Schwingkreis-Praxis

Alle "Geheimnisse" der Schwingkreispraxis kommen ans Licht, und das "Schwingkreis-Paradoxon" wird leicht verständlich erklärt. Durch 75 praxisrelevante Aufgaben und Lösungen geht das Schwingkreiswissen in Fleisch und Blut über.


Umfang: 128 Seiten Best.-Nr.: 411 0145 Preis: 15,00 €

Sender & Frequenzen 2009

Das einzige aktuelle deutschsprachige Jahrbuch über sämtliche Rundfunksender der Welt, die auf Kurzwelle. Mit allen Kurzwellen-Frequenzen, Sendeplänen und Adressen.

Umfang: 576 Seiten Best.-Nr.: 413 0900 Preis: 25,90 €

WRTH 2009

in englischer Sprache
Durch ein internationales
Netzwerk von Mitarbeitern,
bietet dieses Jahrbuch erneut die aktuellsten Informationen zur Mittelwelle, Kurzwelle und FM-Rundfunk und
-Funkern, die man in einer
Publikation finden kann.

Umfang: 672 Seiten Best.-Nr.: 610 8001 Preis: 36,-€

Gerd Klawitter

Theorie und Praxis der Kurzwellenausbreitung

Sie hätten gerne eine Ausbreitungsprognose für den Kurzwellenbereich? Mit einer entsprechenden Software kein Problem. Auf der beiliegenden CD-ROM sind viele der vorgestellten Programme abgespeichert.

Umfang: 160 Seiten Best.-Nr.: 413 0062 Preis: 23,50 €

Thomas Riegler

Radiohören auf Langund Mittelwelle

Trotz nahezu flächendeckender UKW-Sendernetze hat auch heute der Mittel- und Langwellenbereich immer noch seine Berechtigung. Entdecken Sie Ihnen bisher unbekannte Sender und neue Programminhalte.

Umfang: 136 Seiten Best.-Nr.: 413 0055 Preis: 15,00 €

und Kurzwellenhörer.....

Michael Marten

Seefunk

Den neuen technischen Möglichkeiten ist es zu verdanken, dass in den vergangenen Jahren neue Küstenfunkstellen und Funknetze aufgebaut wurden, die es selbst den Eignern kleiner Segelyachten oder Fischereifahrzeugen ermöglicht, Wetterkarten und Seewarnnachrichten zu empfangen und private Kommunikation zu betrei-

Umfang: 488 Seiten Best.-Nr.: 413 0059 Preis: 23,50 €

Thomas Riegler

Digitalisierung analoger Audio- und Videoquellen

In privaten Archiven schlummern unwiederbringliche Aufnahmen, Ton-, Bild-, Film-, und Videodokumente. Dieses Buch zeigt Ihnen, wie Sie analoge Quellen erfolgreich digitalisieren können und auf welche Details es zu achten gilt.

Umfang: 144 Seiten Best.-Nr.: 411 0146 Preis: 19,80 €

Jahrbuch für den Funkamateur 2009

Sie suchen eine Übersicht, in welchen Ländern Sie auf Gegenseitigkeitsbasis nach der so genannten CEPT-Lizenz ohne bürokratische Hürden Amateurfunk machen können? Sie brauchen eine Übersicht zu Amateurfunk-Diplomen? Auf diese und noch viele Fragen mehr erhalten Sie durch dieses Buch ausführliche Antworten!

Umfang: 624 Seiten Best.-Nr.: 610 8092 Preis: 13,50 €

Energiesparen

leicht gemacht

selbst gebaut

Die Funktion von Röhren lässt sich einfacher und anschaulich erklären. Hierzu werden drei verschiedene Röhrentypen eingesetzt, die allesamt preiswert und leicht auch heute noch erhältlich sind. Das Rad der Zeit soll nicht zurückgedreht, vielmehr der Einstieg in die moderne Elektronik veranschaulicht und erleichtert werden.

Umfang: 64 Seiten Best.-Nr.: 413 0063 Preis: 14,50 €

Thomas Riegler

Energiesparen leicht gemacht

Aus dem Inhalt:

Die heimlichen Stromverbraucher im Haushalt • Verbrauch ermitteln und was es bei den Messungen zu beachten gilt • Stromverbrauch unserer Fern-seher • Satelliten-Receiver u.v.m.

Umfang: 120 Seiten Best.-Nr.: 411 0141 Preis: 17,00 €

Thomas Riegler

Webradio und Web-TV

Der Zugang zu Radio- und Fernsehstationen aus dem Internet ist einfacher als Sie denken! Bereits ein simpler PC, egal ob Notebook oder Standrechner mit eingebauter Soundkarte und Lautsprecherboxen, sowie ein Internet-Anschluss genügen. Die Alternative dazu ist ein PC-unabhängiges Webradio.

Umfang: 128 Seiten Best.-Nr.: 413 0060 Preis: 14,50 €

Dr. Richard Zierl

Messgeräte für Röhrenprojekte selbst gebaut

Der Selbstbau von Messgeräten, die beispielsweise bei der Entwicklung von audiophilen Röhrenverstärkern hilfreich sind, ist durchaus möglich. Messgeräte mit Elektronenröhren aufzubauen hat aber nicht nur einen positiven Lerneffekt. Die sprichwörtliche Toleranz von Röhren hohen Spannungen gegenüber prädestiniert sie für den Einsatz in Messgerä-

Umfang: 72 Seiten Best.-Nr.: 413 0064 Preis: 14,50 €

-Verlagsprogramm

Jetzt kostenios und unverbindlich anfordern.

Best.-Nr.: 610 0000

Bestellen Sie jetzt! Wir liefern sofort.

Verlag für Technik und Handwerk GmbH Bestellservice · D-76526 Baden-Baden Tel.: (+49) 0 72 21/50 87-22 Fax: (+49) 0 72 21/50 87-33

E-Mail: service@vth.de Internet: www.vth.de

FUNKAMATEUR-Leserservice: Bausätze · Messtechnik

20-MHz-DDS-Oszillator-**Baugruppe mit Digitalanzeige**

Bausatz für einen DDS-Oszillator, der zwischen 0,1 Hz und 20 MHz Sinus- und Rechtecksignale erzeugt. Vorteilerfaktor für Einsatz mit PLLs sowie Offset-Frequenzen sind programmierbar. Dazu Wobbelfunktion sowie Speichermöglichkeit für 10 Frequenzen.
Alle SMD-Bauelemente sind vorbestückt.
8-stellige Frequenzanzeige, Auflösung bis 10 MHz

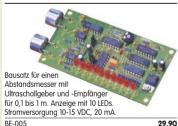
0,1 Hz, über 10 MHz 1 Hz, Spannung am Sinusausgang 2,5 Vss an 50 Ω , Nebenwellenabstand bei 10 MHz mindestnes 50 dB. Stromversorgung ±7...12 V/100 mA. Abmessungen der Platine 156 x 65 mm

DDS-Bausatz		BE-001	59,50
Sinus-Endstufen-IC	AD	811 AD811	14,50
DDS-Baugruppe ferti	g	BE-002	89,50

Breitband-HF-Verstärker RFA 403

Bausatz mit Gehäuse für einen Breitbandverstärker für 10 MHz bis 2 GHz. MMIC-bestückt, etwa 19 dB Verstärkung, Ausgangsleistung (1 GHz bei 1-dB Kompression) typ. + 20 dBm (100 mW). BNC-Buchsen. UB 12–18 V DC, 110 mA.

Breitbandverstärker BE-003


868-MHz-Sender und-Empfänger

Mini-Module für die digitale Signalübertragung AM-Sender mit etwa 10 mW HF-Leistung Betriebsspannung je 3-12 V DC, RX: 1 mA, Digitalausgang 45 x 16 x 6 mm TX: 2-10 mA (je nach Betriebsspannung, 21 x 15 x 5 mm

Module mit deutscher Anleitung

868-MHz-Sender BC-001 9,90 868-MHz-Empfänger BC-002

Ultraschall-Abstandsmesser

Liefer-und Zahlungsbedingungen

Versandpauschale für das Inland nur 3,90 €. Entfällt bei Zahlung per Bankeinzug ab 50 € Warenwert Für Nachnahme gilt ein Mindestbestellwert von 20€ Dabei fallen zusätzlich weitere 5 € Postgebühren an! Kreditkarten werden nur bei Bestellungen aus

VISA Ausland akzeptiert!

FUNKAMATEUR-Abonnenten werden auf Wunsch auch per Rechnung beliefert.

Erstbestellungen von Neukunden nur schriftlich Zwischenverkauf und Irrtum vorbehalten Die Versandpauschale für OE, HB9, HB0, I, LX, OZ, ON, PAO, F, SM, SV, OH und G beträgt immer 5,90 \in Andere Länder auf Anfrage bzw. Aufwand

Antennenanalysator FA-VA MK II

Wobbelnder Stand-Alone-Analyzer für den Freguenzbereich von 50 kHz bis 160 MHz mit vektorieller Anzeige auf Grafikdisplay, USB-Anschluss.

Bausatz mit SMD-bestückter Platine, Display, Gehäuse, Ladeelektronik und Baumapp

BX-110 425.-

Upgrade-Kit auf MK II: USB-Platine, Controller mit neuer Firmware und neues Gehäuseoberteil Ab Lager lieferbar BX-104 69 -

Kurzwellen-RX-Bausatz 1253

9-Band-KW-Empfänger Einfaches FET-Audion für

den Frequenzbereich von 1,8 bis 22 MHz Vorstellung siehe FA 2/99 Bausatz 1253 (komplett mit Gehäuse)

89.00

100-W-Dummyload mit -40 dB-Ausgang

Bausatz für einen bis 150 MHz nutzbaren Abschluss widerstand der mit 100 W belastbar ist und für Mess

zwecke über einen -40 dB-Ausgang (BNC) verfügt. Eingangsseitig hat der Dummyload eine N-Buchse. Komplett, mit bearbeitetem Gehäuse u. Kühlkörper BX-140

SDR-Einsteiger-Kit

Bausatz nach DM2CQL (FA 9/06, S. 1040) Platine, 4 ICs, und alle passiven Bauteile 40-m-Variante BX-050 21.50 weitere 80-m-Varianten s. Online-Shop

Gehäuse-Kit: Weißblechgehäuse, gebohrt, 4 Buchsen und Verbindungskabel **BX-059 7,50** Buchsen und Verbindungskabel

Netzwerktester FA-NWT 01-USB

Komplettbausatz für die neue USB-Version SMD-bestückte Platine, 400-MHz-Takt serienmäßig, mit allen Bauteile, Buchsen und dem Gehäuse aus BX-060-USB

Bausatz FA-NWT 01-U mit aufgebauter/geprüfter Platine inklusive Reflexionmesskopf und Abschirm-BX-069-U 265,-

USB-Adapter für FA-NWT 01: Universeller Adapte USB1.1-RS232 zum Betrieb des NWT über die USB-Schnittstelle des PCs (ohne Abb.) **BX-067 9,95** Abschirm-Kit für FA-NWT 01: 2 Weißblechgehäuse für DDS und Detektor BX-061 5,50

Stereo-Prüfsender

PLL-Prüfaenerator für Abaleich und Reparatur von UKW-FM-Empfängern (UKW-Tuner, Autoradios, tragba re Radios). Frequenzbereich 87,5 bis 108 MHz.

Bausatz Mittelwellen-Einkreiser

MW-Audion-Empfänger nach DL1XR (FA 11/2007). Platine, Ferritstab, alle Bauelemente, 3 Potis usw Kompletter Bausatz 19-V-Blockhatterie und Knöpfe nicht im Lieferumfang)

Mini-Fuchsjagdsender für 70 cm

Bestückte Platine für einen ganz einfachen Fuchsiggdsender im 433-MHz-ISM-Band

Verschiedene Rufzeichen u. Betriebsmodi einstellbar. Die "HF-Markierung" für

verschiedenste Träger: Opa, Kleinkind, Hund, Modellrakete u.v.a. Damit finden Sie alles wieder! 28 x 30 x 4,5 mm klein, Stromversorgung: 3,8–5 V Sendeleistung 1,8 mW, 100 kHz Abstimmbereich

Platine (SMD vollständig bestückt) BW-001 24,50

Schaltbares HF-Dämpfungsglied

In 2-dB-Schritten elektro nisch umschaltbares Dämfungsglied.
Dämpfung 0...66 dB bis mindestens 200 MHz ignet. Direkt vom

Bausatz komplett, mit BNC-Buchsen und bearbe tetem Gehäuse BX-150

Reflexionsmesskopf für FA-NWT Bausatz nach DJ1UGA (FA 12/06 S. 1398)

Bausatz mit Richtkoppler TDC-10-1, bearbeitetem Weißblechgehäuse, 2 BNC-Einbaubuchsen, 1 BNC-Einbaustecker

Komplettbausatz

2. Messdetektor für FA-NWT

Bausatz nach DK3RED (FA 6/08 S. 640

Bausatz mit AD8307, bearbeitetem Weißblechgehäuse, BNC-Einbaustecker, Anschlusskabel us

Bluetooth-Adapter Jabra A-210

Universel einsetzbar, mit 2,5-mm-Klinkenstecker

Ladespannung 6 V, Ladekabel mit passendem Stecker wird mitgeliefert

BTA-210 22.50

Netzteile 0-15 V/1 A • 0-30 V/3 A

Preisgünstige Netzteile mit 2 gut ablesbaren Analoginstrumenten für Ausgangsspannung und -strom. Spannung einstellbar zwischen 0 und 15 V bzw. 0 und 30 V. Maximaler Ausgangsstrom 1, 2 oder 3 A. Klemmbuchsen für Bananenstecker.

NG-15-1 (0...15 V/1 A, links) NG-15-2 (0...15 V/2 A, Mitte NG-30-3 (0...30 V/3 A, rechts)

SDR-Kit zur 6-m-Bandbeobachtung

Bausatz nach FA 6/2007, S. 632 Platine, Filter, TTL-Clock, ICs und alle and. Bauteile 6-m-Variante (50,110 ±24 kHz) BX-056 28,-

Gehäuse-Kit: Weißblechgehäuse, gebohrt, 4 Buchsen und Verbindungskabel BX-059 **7,50**

SDR-Kit für Empfang auf 136 kHz

Bausatz nach FA 7/2007, S. 735 Platine, Filter, TTL-Clock, ICs und alle and. Bauteile BX-057 28,-LW-Variante (136 ±24 kHz)

FT-950/2000-SDR-Spektrumskop

Bausatz nach FA 6/2008, S. Platine, Filter, ICs und alle anderen Bauteile BX-052 38. 69,45-MHz-Variante

USB/CAT-Transceiver-Interface

Verschiedene Anschlussleitungen zur Selbstkon fektionierung über den Online-Shop lieferbar: K-KL3S-ST Kabel m. 3,5-mm-Klinkenstecker, Stereo, 0,7 m 0,80 K-KL6S-ST Kabel mit 6,3-mm-Klinkenstecker, Stereo, 0,7 m 1,-K-CH-ST Kabel mit Cinch-Klinkenstecker, 0,7 m K-DIN-ST5M Kabel mit DIN-Stecker, 5-polig, 1 m 0.90 K-DIN-ST6M Kabel mit DIN-Stecker, 6-polig, 2 m 1,40 K-MDIN-ST6M Kabel mit Mini-DIN-Stecker, 6-polig, 0,8 m 0,80 K-SUBD-ST25M Kabel m. Sub-D-Stecker, m., 25-pol., 0,8 m1,50 K-SUBD-ST9M Kabel mit Sub-D-Stecker, m., 9-pol., 0,8 m 1,20 K-SUBD-ST9W Kabel m. Sub-D-St., w., 9-pol., 0,8 m SUB-D-25M Sub-D-Stecker, männl., 25-polig,

Finband-**CW-QRP-TRX**

3 W HF. RX mit 4-pol. Ladder Quarz-Filter (1 kHz). Der VFO überstreicht ein mindestens 50 kHz breites Segment

ST-DIN13 DIN-Stecker, männl., 13-polig

m CW-Bereich. RIT ± 1,5 kHz. FUII-BK.
Betriebsspannung 12–14 V. Leicht aufzubauen.
Aufbau s. u.a. FA 3/1998 und QRP-Report 1/98.
Bausätze für 40, 30 und 20 am Lager.

Bausatz, komplett mit Gehäuse u. T-Kit 1380 (80 m) BT-38 engl. Anleitung BT-380 109,00 T-Kit 1340 (40 m) BT-340 T-Kit 1330 (30 m) BT-330 BT-320 T-Kit 1320 (20 m)

Bausatz DC-RX für 40 oder 80 m

132 x 60 x 87 mm 8...12 V DC

nur noch 65.

Direktmisch-Empfänger nach DM2CQL, NE612-
 Mischer, 3-kHz-TP, Lautsprecher, 10-Gang-Poti zur

 Abstimmung, HF-Regler, 2 Antenneneingänge usw.

 40-m-RX-Platine + alle Bauteile
 BX-004
 39,

 80-m-RX-Platine + alle Bauteile
 BX-004/80
 39, Kompletter 40-m-Bausatz einschließlich Zusatzkit für die 4-stellige Digitalanzeige und bearbeitetem BX-005 Kompletter 80-m-Bausatz einschließlich Zusatzkit für die 4-stellige Digitalanzeige und bearbeitetem Gehäuse BX-005/80 **nur noch 65**,

45-MHz-Zähler mit CMOS-ICs

5-stellige Anzeige, Auflösung 1 kHz, Betriebspannung +5 V oder +7 bis 18 V, Stromaufnahme max. 65 mA, 13 mm hohe LED-Siebensegment-Anzeigen, 80 x 70 mm.

Kompletter Bausatz BX-020 26,90 Platine Platine für die 5 LED-Anzeigen 2,90

HF-Bauteile · Quarze · Filter · ICs

Spezial-ICs

Digitales LC-Meter II mit PIC (Bausatz)

Optimal ausgelegte Mess-bereiche, einfach aufzubauen und problemlos zu bedienen. L-Messbereich: 10 nH-100 mH C-Messbereich: 0,1 pF-1 µF Beschrieben in Funk 8/97 und FA 1 Kompletter Bausatz mit Gehäuse, Platin

programmiertem PIC und deutscher Anleitung Das Original von AADE! Unsere Verkaufserlöse

hen an den genialen Entwickler!

Alu-Design-Gehäuse

Universelles Tubus-gehäuse zum Einbau von Platinen. Mit Plastik kanten. Abmessungen 100 x 80 x 42 (TxBxH) ADG-80.42.100 **16,-**Ersatz-Frontplatte einzeln G-FR80-DP 1.95

115,-

BNC-Dämpfungsglieder bis 2 GHz

Kommerziell gefertigte Dämpfungsglieder für den Frequenzbereich von DC his 2 GHz BNC-Stecker/-Buchse. Max. Eingangsleistung 1 bzw. 0,5 W. VSWR: 1,1 (@1 GHz). Lieferbar 3, 6, 10, 20 und 30 dB.

AI I-3	12,00	Al I-0	12,00
ATT-10	12,80	ATT-20	12,80
ATT-30	12,80		
BNC-Abso	hlusswiderst	and 50 Ω 0,5 W	9,90
BNC-Abso	hlusswiderst	and 75 Ω 0,5 W	12,50
30-dB-Lei	istungsdämp [,]	fungsglied zum FA-	NWT
als Bausat	z	BX-064	8,50
Frequenzy	verdoppler, 5	0.Q. passiv BNC	

Leergehäuse zum FT-817

Input: 10...1000 MHz

Für den Eigenbau von FT-817-Zubehör. 1,2 mm dickes pulverbeschichtetes Stahlblech, Abmessungen wie FT-817 (135 x 40 x 140) Mit 4 Gummifüßen und Schrauben. BX-002 **19,00**

49,50

Platinenhalter

Solide Montagehilfen (dritte Hand) zum Bestücken und Prüfen von Leiterplatten. Breite 140 mm, Halterungen in 30-Grad-Schritten verstellbar UM-2A, mit Dreifuß #8202 13,50

Große Ausführung bis 240 mm Einspannbreite.
UM-3, Montagehilfe #8203 19,50

KW-RX 1254

0.1-30 MHz AM CW, SSB, Doppelsuper, State of the state s. Beitrag im FA 5/99

Feldstärke-Messkoffer

Die komplette Mess technik zur exakten Bestimmung der Hund E-Feldstärke mit Power-meter PWRM-1. 2 Sonden (HFS-1 und FFS-1) BNC-Adapter und 9-V-Batterie im handlichen Koffer

»FA-SY Nº 1« für 10 bis 160 MHz

Bausatz für einen USB-steuerbaren Universal-Oszillator für Frequenzen von 10 bis 160 MHz Bausatz nach DL1SNG (siehe FA 9/08, S. 953).

Herzstück ist ein SiLab-IC Si570 in CMOS-Version (±20 ppm, mit der On-board-Heizung reduzierbar). Größe 36 x 27 x 19 mm, alle SMD-Teile bestückt. Stromversorgung über USB oder/und 12 V extern

FA-SY Nº 1 Bausatz komplett	BX-026	39,50
FA-SY Nº 2 (LVDS für 10 bis 215 MHz)		42,50
FA-SY № 3 (LVDS für 10 bis 810 MHz)	BX-028	71,60
FA-SY-Adapter zum Programmieren	und Tester	n der
verschiedenen FA-SYs. Bausatz: Plati	ne 75 x 41	mm,
mit USB-Buchse und Sockel	BX-029	3,50

Tiefpassfilter von Mini Circuits 50 Ω

Тур	Durchlassbereic	h fgren	z Sperrberei	ich
	<1 dB	=3 dE	3 >20 dB	>40 dB
	[MHz]	[MHz] [MHz]	[MHz]
PLP-5	DC5	6	810	10200
PLP-10.7	DC11	14	1924	24200
PLP-21.4	DC22	24,5	3241	41200
PLP-30	DC32	35	4761	61200
PLP-50	DC48	55	7090	90200
PLP-70	DC60	67	90117	117300
PLP-90	DC81	90	121157	157400
PLP-100	DC98	108	146189	189400
PLP-150	DC140	155	210300	300600
PLP-200	DC190	210	290390	390800
PLP-250	DC225	250	320400	4001200
PLP-300	DC270	297	410550	5501200
PLP-450	DC400	440	580750	7501800
PLP-550	DC520	570	750920	9202000
PLP-600	DC580	640	8401120	11202000
PLP-750	DC700	770	10001300	13002000
PLP-800	DC720	800	10801400	14002000
PLP-850	DC780	850	11001400	14002000
PLP-1000	DC900	990	13401750	17502000
PLP-1200	DC1000	1200	16202100	21002500
Typ. VSWR	: im Durchlassb	ereich	1,7; im Sperr	bereich 18

Stückpreis 12,90

NF-Verstärker

LM 380N	2 W	2,20
LM 380N-8	2 W	2,00
LM 384	5 W	3,10
LM 386	1 W DIP14	1,95
SL 6270		8,20
SL 6310		4,20
TBA 820M	2 W	1,20
TDA 7205P	5 W	2,50
TDA 2822M	Stereo, 2 x 1 W	2,50
TDA 2822D	Stereo, 2 x 1 W, dto. SMD	2,80

Keramikspule

22 Wdg. (max. 30)., ø 38 mm, 80 mm lang, Körper ideal für PA-Spulen u.ä. geeignet. # 6904

1:1-NF-Übertrager Hochohmiger P1200 von ETAL. Der

geeignete NF-Übertrager für Interface zwischen PC-Soundkarte u Funkgerät. 17 x 17 x 13 mm

Doppel-Drehko

10...330 pF und 10...390 pF

Abmessungen ohne Achse:

Untersetzung 6:1, 6-mm-Achse

Gusschassis 47 x 45 x 33 mm³

Micky, präzise deutsche Handarbeit, 55 g

24-polig, 7,5 mm Reihenab stand Textool24

24-polig, 7,5-15 mm Reih abstand Textool24b 3, 40-polig, 7,5-15 mm Reih abstand (ohne Abb.)

Textool40b

Einbauinstrument

Rarität! 100 µA (+ 20%) Skaleneinteilung 1...6, Frontplattenausschnitt 35 x 14 mm, Tiefe 32,5 mm seitliches Loch für Beleuchtung, z.B. LED mit ø 5 mm INST-100

12-V-Solarpanel

Praktisches Solarpanel in einem stabilen Koffer Strom für verschiedenste Verbraucher wie z.B. QRP-Stationen, Notebooks, Handys und Radios oder zur zusätzlichen Ladung Ihrer Autobatterie

Technische Daten: Ausgangsspannung 12 V max Panelleistung 13 W Ladeanzeige mit LED, Sperrdiode integriert

Maße: 530 x 390 x 40 mm (L x B x H)
Lieferung mit Ladeklemmen für Autobatterie, Zigarettenankünderkabel und -buchse

SP13A (Sonderpreis für Abonnenten)

KW-Antennenumschalter (FA 2/08)

Bausatz für einer ferngesteuerten Antennenumschalter für Sendeleistungen bis 100 W.
Komplettbausatz in Kürze wieder lieferbar mit Platine, Relais 88,50

-161 jedoch ohne Buchsen u. Gehäuse BX-160 Platine

Miniaturdrehschalter-System

Für Leiterplattenmontage. Rastermaß 2,5 mm. Achse 4 mm ø. Restbestände aus DDR-Produktion. Viele Ausführungen, Einzelteile lieferbar mit denen

Sich viele 30	men re		
Bestell-Nr.	Stufen	Ebenen	Preis
MDS-2-1R	2	1	2,-
MDS-3-1R	3	1	2,-
MDS-3-2G	3	2	2,25
MDS-3-5G	3	5	3,-
MDS-4-20	4	2	2,25
MDS-4-3R	4	3	2,50
MDS-5-50	5	5	3,-
MDS-6-4R	6	4	2,75
MDS-7-2R	7	2	2,25
MDS-8-4R	8	4	2,75
MDS-9-2R	9	2	2,25
MDS-9-3R	9	3	2,50
MDS-10-3R	10	3	2,50
MDS-10-4R	10	4	2,75
MDS-10-5R	10	5	3,-
MDS-10-7R	10	7	3,50 📹
MDS-12-4R	12	4	2,75

Re Kennfarbe rot; Ge grün; O-orange/gelb Gesamtsortiment und lieferbare Einzelteile (Rastköpfe mit 2 bis 12 Stellungen und 2 unterschiedlichen Achslängen, Ebenen mit 4 verschiedenen Kontoktmaterialien und Schalfstücke unter

Melodie- und Soundeffekt-ICs

Melodiegenerator-IC "Lullaby" M955C4 DIP14	
dto. mit 3 Weihnachtsliedern M955C2 DIP14	2,40
Melodie-IC "Its a small world" M66T68 TO92	2,10
Ding-Dong M602 DIP8	2,20
Sirene M3720-4 DIP8	2,00
3 verschiedene Sirenen UM3561 DIP8	3,20
6-Ton-Generator für Alarm SMC0608S DIP8	2,20
Datenblätter/Schaltungen auf www.funkame	ateur.de

USB-Interface zur Kopplung von ICOM-Transceivern an einen PC. Als Besonderheit übernimmt es auch die CW-Tastung und die Steuerung der PTT. Fast-Fertig-Bausatz mit SMD-vorbestückter

FM-ZF (RFT) wie TDA1047 2,80 AM/FM-ZF (RFT) 2,30 Video-OV 14,50 Mischer bis 400 MHz PLCC20 16,50 811AN AD 811 AN Video-OV
AD 8000mbz Mischer bis 400 MHz PLCC20
AD 8000mbz Ultra-Highspeed-OV, 1,5 GHz
AD 8307AN Breitbandlogarith. 500 MHz
AD 8342Acpz dkliver Mischer bis 2,4 GHz
AD 8361Asm Detektor, 2,5 GHz
AD 9951svg. DDS, 14 Bit DAC, 400 MPS
AD 9958cpz DDS, 2-Kanal, 10 Bit, 500 MPS Activer Mischer bis 2,4 GHz 7,50
Detektor, 2,5 GHz 9,50
DDS, 14 Bit DAC, 400 MPS 25,50
DDS, 2-Kanal, 10 Bit, 500 MPS 31,80 BA 1404 BH 1415F UKW-Stereosender
UKW-Stereosender mit PLI BH 1410F CA 3005 CA 3005 CA 3005 CA 3089 CA 3130F CA 3189 CNY 17-2 EL2125CSZ HT9200A ICM 7555 IM117 DT-IM117 -Stereosender mit PLL Diffenzverstärker (CA 3028) Transistor-Array FM-ZF-Verst. m. Demodulator BiMOS-OPV FM-ZF-Verst. m. Demodulator Optokoppler Optokoppler superrauscharmer OV DTMF-Generator Spannungsregler 1,8 \ Spannungsregler 3,3 V Fernsteursender (27/40 MHz) 2,90 4,30 1,00 1,20 1,50 1,50 5,95 3,60 1,20 8,00 2,35 2,90 2,90 2,80 Fernsteuerempfänger dto. 4-fach Komperator OPV, 2-fach 2-fach Komperator Video-Verstärker MAX 4544CP MAX 4514CP MAX 4616CP MAX 4616CP MAX 4616CP MAX 4616CP MC 1330P MC 1350P MC 1437L MC 1458 MC 1496 MC 2830P MC 2833P MC 2833P MC 2833P MC 2833P MC 3340P Oszillator-IC RS-232-Sender/-Empfänger RS-22z-Seitaetr-Empiringer Spannungsüberwachungs-IC Analogschalter 4-fach Analogschalter 4-fach Analogschalter Video-Detektor ZF-Verstärker 2 fach ODV 2-fach OP 2-fach OPV
2-fach OPV
Modulator/Demodulator
NF-AGC/VOX DIL
NF-AGC/VOX SMD 0,80 2,90 5,90 6,80 6,80 4,50 2,90 5,95 2,20 20,50 4,80 5,90 FM-Sender DIL FM-Sender SMD 2833D 3340P 3361P 3362P 34063A 10231 14162 14163 14569BP HF-Dämpfung FM-ZF-Verstärker FM-ZF-Verstärker FM-2F-Verstarker Schaltregler High Speed Flip-Flop Syncr. BCD-Zähler Synchr. 4-Bit-Binärzähler Programmierbarer Zähler Dual-SCF DTMF-Decoder MF 10CCN MT 8870 NE 555N NE 556N NE 5567 NE 592-14 NE 5517N NJ 8811 RF 2420 SA 612 SA 614N SL 362C SI 440 SL 4908 SL 952 SL 4908 SL 4908 SL 952 SL 4908 SL 4908 SL 952 SL 440 SL 4908 SL 4908 SL 952 SL 440 SL 4908 SL Timer
Doppel-Timer
Ton-Decoder mit PLL
Videoverstörker (120 MHz)
Videoverstörker (120 MHz)
2-fach OPV
Steuer-IC f. Frequ.-Synthesizer
HF-Dämfungsteller, digit. gest.
Mischer
7F-Verstörker | Jirker | OPV | .euer-IC für | ... ZF-Verstärker 2-fach OPV 2,40 8,60 8,60 9,90 9,20 9,80 9,80 6,50 9,80 7,20 1,20 2,50 0,90 0,90 7660 SMD 7805 7812 1,60 0,40 0,40 Spannungsregler 5 V/1 A Spannungsregler 12 V/1 A Spannungsregler 5 V/0,1 A
Spannungsregler 9 V/0,1 A
Spannungsregler 12V/0,1 A

USB-Interface für ICOM-Transceiver

Erforderliche Restarbeiten sind Man braucht keine 5 Minuten

Ferritstäbe

Absolute Raritäten! Leider nur noch zwei Ausführungen am Lager

3		
200 x ø 10 mm	Abb. 1	5,90
150 x ø 8 mm	Abb. 2	4,80

Wickelkörper für Ferritstäbe (o. Abb.)

Zum professionellen Wickeln von Spulen auf

Innen-ø 10,2 mm, 15,5 mm lang, 4 Kammern 0,60 Innen-ø 8,15 mm, 12,3 mm lang, 1 Kammer 0,40

Foliendrehkos mit Knopf* Ω

FD-500	500 pF	20,5x20,5x17,5	24,5	5,10
FD-60+140*	60 u. 140 pF	20,2x20,2x11	*) ohne	2,90
*) Achse 10 m	m lang, für 6 mm	n Spannzangenknö	pfe geeignet	ir
Geeignet für A	udions. Detektor-	Empfänger, QRP-A	ntennentune	r usw.

FD-80+240	80 u. 240 pF	20,5x20,5x17,5	24,5	4,60
FD-500	500 pF	20,5x20,5x17,5	24,5	5,10
FD-60+140*	60 u. 140 pF	20,2x20,2x11	*) ohne	2,90
Achse 10 mi	m lang, für 6 mm	n Spannzangenknöpf	e geeignet	r
Geeignet für Audions, Detektor-Empfänger, QRP-Antennentuner usw.				

*) 3. Oberton **) 7. Oberton

Breitbandübertrager von Miniciruits **für 50-** Ω **-Systeme** (Case X65 = DIL 6-polig

Тур	-3-dB-Be	reich	Koppl	ung ma:	x. Inpu	ut Preis
TI-IT	0,1-200	MHz	1:1	2 W	Α	4,50
T2-1T	0,1-200	MHz	1:2	2 W	Α	5,60
T1.5-1	0,1-300	MHz	1:1,5	2 W	С	4,50
T2.5-6	0,1-100	MHz	1:2,5	2 W	В	4,50
T4-1	0,5-200	MHz	1:4	2 W	Α	3,50
T4-6	0,2-200	MHz	1:4	2 W	С	5,70
T14-1	0,2-150	MHz	1:14	2 W	D	5,00
T9-1	0,2-200	MHz	1:9	2 W	С	4,00
T-622	0,1-200	MHz	1:1:1	2 W	F	3,30
TT-4-1	0,05-200	MHz	1:3	2 W	В	6,00
TT-25-1	0.02-30	MHz	1.25	2 W	В	9 90

C-Dioden

BB 112 (470/30) BB 139

BB 149A SOD323

BB 204g BB 212 AM-Dual

KB 205 gn 0,40 $(*/*) = C_{1} \text{ V} / C_{12} \text{ V}$ in pF

BB 304 (28/11)

BB 409 (44/10 BB 409 (44/10) 1,55 BB 629 (40/8) SMD 0,50 0,40

BB 221

Power-Module von Mitsubishi für das 2-m-Band

• Betriebsfrequenzbereich 135 bis 170

Datenblätter siehe www.minicircuits.com

- für FM-Betrieb vorgesehen
 mit externer Gate-Spannung auch für den SSB-Linearbetrieb geeignet
- Eingangs- und Ausgangsimpedanz 50 Ohm
- unempfindlich gegen ausgangsseitige Fehlanpassuna
- in vielen Amateurfunkgeräten im Einsatz

				1 1 1	The same of the sa
Тур	Ub	Ubmax.	Pin	Pout	Stück
RA08H1317M	12,5	13,2	20 mW	>8 W	26,80
RA13H1317M	12,5	17	50 mW	>13 W	38,00
RA30H1317M	12,5	17	50 mW	>30 W	48,80

Lieferung mit englischem Original-Mitsubishi-Datenblatt

Universaltransistoren

11 41 1313101011	
BC 547B	0,20
BC 557B	0,20
SC 308C	0,20
SC 308D	0,20
SF 245	0,20
SF 818D	0,20
SF 828D	0,20
SF 829D	0,20
10 Stück je	1,25

Typ Äquivalent fmax Vp

[GHz]

MMICs

ERA-1

ERA-3

ERA-4 ERA-5

MAR-3

ERA-6 MAR-1 MSA0185 MAR-2 MSA0285

MAR-4 MSA0485

Ge-Dioden GA104 0.30 AA116 0,80

Ferritperlen zur

11-Dam	prung
	ø 4 mm,
	4 mm
	lang,
	5 St 1.

			0 01.	"
		4	¥.	A
@1GHz	NF	IP ₃	Pout ma	X.
[dB]	[dB]	[dbm]	[dbm]	€
12,1	5,3	26,0	11,7	4,20
16	4,7	26,0	12,8	4,20
22,2	3,8	23,0	12,1	4,70
13,7	5,5	32,5	17,0	5,70
19,8	4,5	33,0	18,4	8,20
11,1	8,4	36,5	18,5	8,20
15,5	5,5	14,0	1,5	5,70
12	6,5	17,0	4,5	5,10

6,0 23,0 10,0 5,10 6,5 25,5 12,5 5,10 3,0 14,5 2,0 5,60 5,0 19,0 5,5 5,60

22,5 3,3 27,0 12.5 5.60

FA-Leserservice · Berliner Str. 69 · 13189 Berlin Freecall 0800-73 73 800 (nur aus dem dt. Festnet

Versilberter Kupferdraht

Durchmesser	Länge	Preis
0,6 mm	10 m	1,95
0,8 mm	7m	1,95
1,0 mm	5 m	1,95
1,5 mm	2m	1,95
2,0 mm	2 m	4,90

Ouarza div

Qualze, ui	v.
38,0 kHz	9,90
7.600 kHz	9,90
4.000,0 kHz	1,50
8.000,0 kHz	1,50
8.998,5 kHz	4,90
9.000,0 kHz	4,90
9.001,5 kHz	4,90
10.240,0 kHz	3,90
10.245,0 kHz	1,50
10.698,5 kHz	4,90
10.700,0 kHz	3,90
10.701,5 kHz	4,90
14.838,0 kHz	4,95
14.849,0 kHz	4,95
14.852,0 kHz	4,95
14.856,0 kHz	4,95
16.000,0 kHz	1,50
20.945,0 kHz	4,95
21.388,0 kHz	4,95
22.000,0 kHz	4,95
31,3333 MHz*	4,95
38,6666 MHz*	4,95
42,0000 Mhz*	4,95
44,8888 Mhz*	4,95
45,2222 Mhz*	4,95
117,000 MHz**	12,00
*1.0.0	M

10.135,0 kHz	4,95
10.145,0 kHz	4,95
14.010,0 kHz	4,95
14.040,0 kHz	4,95
14.055,0 kHz	4,95
14.060,0 kHz	4,95
14.252,0 kHz	4,95
140550111-	4.05

Band-Quarze

550 0 kHz

3.555,0 kHz 3.560.0 kHz

3 655 0 kHz

3.670,0 kHz

7.000,0 kHz

7 015 0 kHz

7.025.0 kHz

7 030 0 kH:

7.035.0 kHz

7.040,0 kHz 7.045,0 kHz 7.050,0 kHz 7.052,0 kHz

7.055,0 kHz 7.070,0 kHz

10.105,0 kHz

10 106 0 kHz

10.115,0 kHz

10.116.0 kHz

4 95

4 95 4,95 4,95 4,95

4,95

4 95

4.95

4,95 4,95

4,95 4,95 4,95

4 95 4,95 4,95 4,95 4,95 4,95

4,95 14.255,0 kHz 14 270 0 kHz 14.300,0 kHz 14.333,3 kHz 18.096,0 kHz 4,95 4,95 21 060 0 kHz 21.250,0 kHz 21.255,0 kHz 4,95

21.270,0 kHz 21.300,0 kHz 24.906,0 kHz 4.95 24.910,0 kHz 28.000,0 kHz 28.060,0 kHz 28.500,0 kHz

4,95 4,95 50,100 MHz 50,102 MHz 4,95 4,95 50,105 MHz 50,120 MHz 4,95 4,95 4,95 50,150 MHz 50,200 MHz 144,152 MHz 144,155 MHz

HC-18/U, 30 pF Bürde ab 50 MHz Serienres. Andy Fleischer f Fax (0421) 24 43 131

HF-Transistoren 48.80

DF1/3	1,30
BF199	0,50
BF225	0,50
BF450	0,50
BFR90	0,90
BFW92A	0,60
KT610 B	4,20
KT920 A	6,50
KT920 B	8,50
KT920 W	12,50
KT925 A	7,50
KT925 B	9,50
KT925 W	14,50
ONIOFFO	0.50

Platinen, Platinensätze, Teilesätze

1.40

1.20

135-MHz-DDS-VFO (FA 11/05), unb. PLB-03 12,80 Antennengalysator (FA 10/05 S 1026)

Amenical and sold in a loros, s.	10201,	
4 Platinen im Satz	PLS-01	46,-
KW-Stehwellenmessbrücke (FA7/	06) PLB-05	6,50
VHF-Peiler (FA 8+9/06, S. 1026), 6	Platinen im	Satz
dazu 2 programmierte Controller	PLB-06	36,50
DSP-TRX-Modul (DL7IY FA 5/07)		18,50
Antennenumschalter (FA 2/08, S. 1	86) PLB-11	24,50
IQ-Mischer (FA 5/08)	PLB-12	14,50
IQ-Mischer und 2 ICs AD831	BX-174	45,-
Störungssuchempfänger (FA 8/0	8) PLB-22	6,50
PLB-22 mit Spezialteilesatz	BX-022	22,50
S-Parameter-Umschalter nach D	K4SX	
(FA 7/08)	PLB-13	12,50

PLB-13 mit Spezialteilesatz BX-025 22, Platine DL-QRP-PA, SMD-bestückt, mit 2 Doppellochkernen und Baumappe

Mono- und Bidirektionale

zobbiei	30 75 ww	w.mini-circuits	s.com	100
yp	Frequenz	Kopplung	max. Input	
DC-10-1	1400 MHz	10,0 dB	1/2 W	23,50
DC-10-1BD	1400 MHz	11,5 dB	2/4 W	18,00
DC-20-1BD	0.5 200 MHz	10 2 dB	3/5 W	24 50

Quarzfilter und keramische Filter

/-MHz-Quarztilter (40-m-Band), monolith	isch
7.008M15A (fm=7,008 MHz, 15 kHz, 2pol., 2 p	oFll3k) 8,90
7.022M15A (fm=7,022 MHz, 15 kHz, 2pol., 2 p	Fll3k) 8,90
9-MHz-Quarzfilter, monolithisch	
9MXF24 (2,4 kHz, 8pol., 18 pF II 980Ω)	39,00
9M7A (8 kHz, 2pol. 2 pF ll 3 kΩ)	5,90
9M12B (12 kHz, 4pol. 2 pF ll 3 kΩ)	8,90
10,7-MHz-Quarzfilter, monolithisch	
10M7A (8 kHz, 2pol. 2 pF ll 3 kΩ)	5,90
10M12B (12 kHz, 4pol. 2 pF II 3 kΩ)	8,90
10M12D (12 kHz, 8pol.)	16,—
10M30A (30 kHz, 2pol. 2 pF ll 3 kΩ)	5,90
21,4-MHz-Quarzfilter, monolithisch	
21M12A (12 kHz, 2pol. 2 pF ll 1,5 kΩ)	5,90
21M12D (12 kHz, 8pol. 2 pF ll 2 kΩ)	19,—
70,2-MHz-Quarzfilter	
MOF 70 2-1600/2 (18 kHz 1 4 nF 4 7 kO)	19 —

CFU455D2	3,90			
CFW455D	5,10			
CDA 5.5 (TV-Ton-ZF) 5,5 MHz	0,55	١		
SFE 7.02 (Murata) 40 m	3,95	١		
SFJ 10.7 (Stettner) 10.7 MHz	0.55			

1,20

0,80

1,40 0,80 1,20

0.60

0 90 0,90

0,40

3,90 2,80 0,70 4,50

Fets · Mosfets

BF245Δ

BF245B BF245C

BF246A

BF246B

BF246C BF247A

BF907

RFQ10

BF981

BF998

BF1005

U310

2NA416

2N7000

3N203

Abgleichbare

Filterspulen

von Neosid

Тур

BV5046

BV5048 BV5049

BV5056

BV5800

18.5

OMXF24 D

Durchlasskurve eines 9MXF24D (oben) Maßzeichnung der Typen 9MXF24D und 10MXF24D

[MHz]

60 (40) 80 (40)

90 (130) 75 (100)

65 (1,2)

Preis

€ 1,95

14.20

6.90

2,90

5,90

Mengenrabatte für alle Quarzfilter auf Anfrage

[µH]

30 4.8

50...200

 BV5918
 3...15
 2.2
 125 (10)

 BV5116.31
 000.300
 29...34 nH
 150 (120)

 BV518.30
 50...200
 53...70 nH
 150 (120)

 BV518.43
 100...300
 19...21 nH
 150 (150)

 BV519.65.1
 300...450
 24reis-Helk-Filter

 BV5105.01
 420..446
 3-Kreis-Helk-Filter

Das Sortiment wird erweitert. Kataloge u. Datenblätter findet man beim Hersteller auf www.neosid.de

max 0,9 max. 1,0

max. 0,33

z-m-kx	<u>-QU</u>	arze			
14,93333	(S20)	6,50			
14,95000	(S21)	6,50			
14,954166	(S22)	6,50			
14,95833	(S23)	6,50			
14,96667	(R0)	6,50			
14,97500	(R1)	6,50			
14,98333	(R2)	6,50			
14,9917	(R3)	6,50			
15,0000	(R4)	6,50			
15,00833	(R5)	6,50			
15,016667	(R6)	6,50			
15,025	(R7)	6,50			
HC-49/U, 3. Oberton					
ür 10.7-MHz-Konzepte					

Pin-Dioden

BA479	0,80
MA4P1250	8,20

Filteraehäuse

aus Weißblech mit 2 Löchern für BNC-Buch

ם זו	DIAC-DO	Jiseii	-	
)	Länge	Breite	Höhe	Preis
1B	37 mm	20 mm	20 mm	2,00
2B	55 mm	20 mm	20 mm	2,40
3B	77 mm	20 mm	20 mm	2,80

Vorteiler-ICs

Oszillatoren

500 MHz EG-2102CA

21 12 MHz

22,0 MHz

80 MHz

100 MHz

MC12079P

U 891BS

Filterspulen-Bausätze von Neosid

2,8 GHz

400 MHz 1,3 GHz

1,3 GHz

600 MHz

GHz

DIP-8

DIP

3 90

4.80

Typ		A-	O.	remini	iciiui	1 1013
	[MHz]	[nH]		Kern	Kappe	
7F1S	515	12	60125	F10b	F10b	1,25
7T1S	2060	5,5	60110	F40	-	1,25
7V1S	50200	4,5	50120	F100b	-	1,25

1:64/128/256

1:5 1:64

1:10/11

SP8620 U664BS U 813B5

SBL-1	9,9
SBL-1MH +13 dBm	13,50
SCM-1	9,9
TUF-1	9,9

Mixer

ADE-1

von Mitsubishi	KW-	Mostets
	von	Mitsubishi

RD00HHS1	1.40
RD06HHF1	3,70
RD16HHF1	4,90
RD100HHF	26,50

Programmierbare SiLab-XOs Si570

Si570, CMOS, 3,3 V
0160 MHz 18,50
Si570, LVDS, 3,3 V
0215 MHz 19,80
Si570, LVDS, 3,3 V
0810 MHz 48,90
Hex-Adresse 50

500.000 PHPA TXCO 12.8 MHz Universaldioden

Limites	,5 V	370, CIVIO3, C
Univer	18,50)160 MHz
1N4007	3 V	570, LVDS, 3,
1N4148	19,80)215 MHz
1N5400	3 V	570, LVDS, 3,
1N5817 (48,90)810 MHz

IN5817 (Schottky) 0.30

Potenziometer (horiz.)

ALPS, zum Einlöten in Platinen. Achse: ø 6 mm, 17 mm lang

10 k lin	PH-10klin	1,20
100 k lin	PH-100klin	1,20
10 k log	PH-100klog	1,20

Potenziometer (vert.) 10 k lin PV-10klin PV-100klir PV-100klog 10 k log

Neu: Hochlast-Widerstände

Induktivitätsarme mit 100 W belastbare Widerstände für den Selbstbau von Dummy-Loads

50 Ω, 100 W **11,20** 100 Ω, 100 W **11,20**

VCOs

P_{out}≈10 dBm³

Keramische Trimmer

600	Ø IU IIII	
	3 Ansch	ılüsse
7	1 Stück	0,40
1 /	5er-Pag	
,518		#6414
040	pF	#6418
	ø 7.5 m	m

		0,,0		
	100	3 Ans	schlüs	se
	190	1 Stüd	ck	0,4
	1	5er-P	ack'	1,6
3	3,513	pF	#	640
4	4,520	pF	#	640
1.7	6 20	nE	#	640

	*) +713	dBm		24,5
	POS-2000		-	200
	POS-1400	975	-	140
	POS-1060	750	-	106
	POS-765	485	-	76
	POS-535	300	-	52
	POS-400	200	-	38
	POS-300	150	-	28
	POS-200	100	-	20
	POS-150	75	-	15
	POS-100	50	-	10
	POS-75	37,5	-	7
	POS-50	25	-	5
	POS-25	15	-	2

MHz (fu

IC-Satz für den DSP-TRX nach DL7IY

Alle Spezial-ICs für Platine PLB-10... BX-175 64,-

FUNKAMATEUR-Jahrgang

mit Index. Dazu umfangrei-

12.90

10,-

FILL

12.90

1996 auf CD-ROM 12 Hefte im PDF-Format

che Software zu den

Zeitschriftenjahrgangs

FCA-96 (Abonnenten)

2003 auf CD-ROM

12 Hefte im PDF-Format

che Software zu den

Zeitschriftenjahrgangs

Beiträgen des

FC-003

mit Index. Dazu umfangrei-

FCA-03 (Abonnenten) 10.-

Beiträgen des

FC-096

CD-ROMs und DVDs

FUNKAMATEUR-Jahrgang

1995 auf CD-ROM 12 Hefte im PDF-Format mit Index. Dazu umfangreiche Software zu den Beiträgen des Zeitschriftenjahrgangs.

FC-095 12.90 FCA-95 (Abonnenten) 10.-

FUNKAMATEUR-Jahrgang 2002 auf CD-ROM

12 Hefte im PDF-Format mit Index. Dazu umfangreiche Software zu den Beiträgen des Zeitschriftenjahrgangs

FC-002 12.90 FCA-02 (Abonnenten) 10.-

Neue Version sPlan 6.0 zum Schaltplanzeichen Neue Funktionen, einfaches Handling, Vektorgrafik, Stücklistenfunktion, erweiterbare Bibliotheken. Unter Win 95, 98, ME, NT, 2000

Der Jahrgang 2001 der »funk« auf einer CD-ROM 12 Hefte im PDF-Format mit Index

FUC-01 10 -AC-668 (DVD-Vers.) 34,50

FUNKAMATEUR-Jahrgang 1997 auf CD-ROM 12 Hefte im PDF-Format

mit Index. Dazu umfangreiche Software zu den Beiträgen des Zeitschriftenjahrgangs 12.90 FC-097

FCA-97 (Abonnenten) 10.-**FUNK FUNK**

FUNKAMATEUR-Jahrgang 2004 auf CD-ROM 12 Hefte im PDF-Format mit Index. Dazu umfangreiche Software, Platinenlay

outs zu den Beiträgen des Jahrgangs u.v.m. 12.90 FC-004

FCA-04 (Abonnenten) 10,-

FUNKAMATEUR-Jahrgang 1998 auf CD-ROM 12 Hefte im PDF-Format mit Index. Dazu umfangreiche Software zu den Beiträgen des Zeitschriftenjahrgangs

FC-098 12.90 FCA-98 (Abonnenten) 10.-

FUNKAMATEUR-Jahrgang

12 Hefte im PDF-Format

umfangreiche Software,

Platinenlayouts u.v.m.

FC-005

Jahrgang 2005 der »funk«,

FCA-05 (Abonnenten) 10.-

12.90

2005 auf CD-ROM

mit Index. Dazu der

FUNK FUNK

FUNK FUNK FUNK

1999 auf CD-ROM 12 Hefte im PDF-Format mit Index. Dazu umfangreiche Software zu den Beiträgen des Zeitschriftenjahrgangs. FC-099

12.90 FCA-99 (Abonnenten) 10.-

FUNKAMATEUR-Jahrgang 2006 auf CD-ROM

12 Hefte im PDF-Format mit Index. Dazu umfangreiche Software, Platinenlayouts u.v.m.

FC-006 12.90 FCA-06 (Abonnenten) 10.-

FUNKAMATEUR-Jahrgang 2000 auf CD-ROM 12 Hefte im PDF-Format

mit Index. Dazu umfangreiche Software zu den Beiträgen des Zeitschriftenjahrgangs FC-000

12.90 FCA-00 (Abonnenten) 10.-

2001 auf CD-ROM 12 Hefte im PDF-Format

mit Index. Dazu umfangreiche Software zu den Beiträgen des Zeitschriftenjahrgangs

FC-001 12.90 FCA-01 (Abonnenten)

12 FUNKAMATEUR-CD-ROMS (1995-2006) im Paket

FC-012 FCA-12 (Abonnenten)

89,-

39,90 SPLAN-6

QRP Quarterly 1979-2004

»QRP-Quarterly« auf einer

Alle 25 Jahrgänge der

QRP-ARCI-Zeitschrift

Sprint Layout 5.0 Programm zum Entwurf von Platinen auf CD-ROM. Leicht erlernbar, für 1- u. 2-seitige

LochMaster 3.0 Software zur Planung und Dokumentation von élektronischen Schaltungen auf Lochrasterplatinen, Läuft unter Windows 95, 98, NT, ME, 2000 und XP.

LOCHM-3

FrontDesigner 3.0 Software zur Gestaltung von Frontplatten für elektronische Eigenbaugeräte, die man auf Folien ausdrukken kann. Läuft unter Win 95, 98, NT, ME und XP.

FRONT-3

AudioWave 2.0 Macht die PC-Soundkarte zum 2-Kanal-NF-Signalgenerator! 1 Hz...20 kHz, Sinus- und Rauschsignale, Frequenzund Amplitudenmodulation AUDIO-2

2007 auf CD-ROM

outs u.v.m.

FC-007

12 Hefte im PDF-Format

FCA-07 (Abonnenten)

mit Index. Dazu umfangrei-

che Software, Platinenlay-

12.90

1002 Schaltungen Über 1200 Schaltungen zur Lösung Ihrer Probleme. Mit Beschreibungen und vielen Platinenlayouts. Elektor 2003. Ab Acrobat Reader 4 für Win, Linux und Mac EC-001

radio CD-RON

ECD - Die Bauelemente-Datenbank vom Elektor Die 4. aktualisierte Ausgabe der Elektor-CD mit Daten von über 5000 ICs, 35000 Transistoren, FETs, Thyristoren und Triacs sowie 25000 Dioden

EC-004

Der Jahrgang 2002 der »funk« auf einer CD-ROM 12 Hefte im PDF-Format mit Index

FUC-02

Der Jahrgang 2003 der »funk« auf einer CD-ROM 12 Hefte im PDF-Format mit Index

10 -

FUC-03

10 -

Der Jahrgang 2004 der »funk« auf einer CD-ROM 12 Hefte im PDF-Format mit Index

CDs 2001-2004 der »funk« FUC-04 10.-**FUC-98**

Winter 2009 Aktuelle Ausgabe des

internationalen Callbooks. Deutsche Benutzeroberfläche wählbar. Über 250 Landkarten QTH-Anzeige CBW-09

EUROCALL 2009 Rufzeichenlisten von DL. ES, EA, LA, LX, EI, SM,SV, G, ON, OZ, 4X, LY, Z3 und 9A auf CD. Die preiswerte Alternative zur Callbook-CD

von K.W. Moltrecht, DJ4UF, auf CDs Klasse E VC-006 12.50 Klasse A VC-005

Die Klingenfuss-Super-Frequenzliste 2009 Frequenzen von 8500 KW-Rundfunksendern, 10000 Funkdiensten u.v.m.

KC-009

Ham Radio Magazine 68-76 CD-ROM der Zeitschrift, die unter Leitung von J. Carr von März 1968 bis Juni 1990 ieden Monat in den USA erschienen ist. 4 CD-ROMs im Paket!

Ham Radio Magazine 77-83 CD-ROM der Zeitschrift, die unter Leitung von J. Carr von März 1968 bis Juni 1990 ieden Monat in den USA erschienen ist. 4 CD-ROMs im Paket!

69,00 HC-773

Ham Radio Magazine 84-90 CD-ROM der Zeitschrift, die unter Leitung von J. Carr von März 1968 bis Juni 1990 ieden Monat in den USA erschienen ist. 4 CD-ROMs im Paket

HC-840

69.00

69.00

Umgebungseinflüsse auf Antennen J. A. Weigl, OE5CWL, 2007, 256 S., 253 Abb., 1. Aufl., 16,5 x 23 cm V-8408 20,-

Antennenbau für den Praktiker N. Bürgers, DL5ED, 45 Seiten V-3637 9,80

Sloper-Antennen J. A. Weigl, OE5CWL, 2007, 224 S., 255 Abb., 1. Aufl., 16,5 x 23 cm V-8347 18,80

Amateurfunk-Antennen
R. Auerbach, DL1FK,
178 Seiten, aktualisierte
Neuauflage
B-0555 21.-

Inverted-Vee-Antennen
J. A. Weigl, OE5CWL,
2006, 184 S., 211 Abb.,
1. Aufl., 16,5 x 23 cm
V-8329
17,80

Rothammels Antennenbuch 12. Auflage, A. Krischke, DARC-Verlag D-033X 48.60

Antennen für die unteren Bänder 160-30 m P. Villemagne, 128 S. V-3564 14.80

Die HB9CV-Antenne Erfolg mit einfachen Richtantennen für KW und UKW. F. Sichla V-3920 9,

Magnetantennen Selbstbau-Loops für Sende- u. Empfangsb. H. Nussbaum, DJIUGA, 3. Auflage V-3858 12.80

Aktivantennen und Preselektoren im Selbstbau H. Nussbaum, DJ1UGA V-3896 12.80

CQ DL-Spezial UKW-Antennen DARC-Verlag, 2006 D-9910 7,50

CQ DL-Spezial Antennen international DARC-Verlag, 2004, 116 S. D-9901 7.5

Außergewöhnliche Empfangsantennen und ihre Anpassung für den Längst- bis KW-Bereich W. Friese, DG9WF, 2007, 136 S., 156 Abb. V-8361 16.50

Amateurfunkantennen

V-8078 17,80

Kurzwellen-Drahtantennen für Funkamateure Klüβ, DF2BC, 146 Seiten, 4. Auflage V-3364 12,-

Aktivantennen für LW-, MW und KW-Empfang Dr. R. Zierl, 2005, 96 S., 155 Abb. S-6431 9.80

Joseph J. Carr

29.50

Aktive Antennen
Eric T. Red und
R. Birchel, DJ9DV, 68 S.
2003
B-0430 9,80

KW-Breitband- und Aktivantennensystem M. Schulze, 2006, 112 S. B-0538 16.80

Datensammlung für Kurzwellenantennen W. Nitscke, DJ5DW, 2003, 142 S.

B-0457

Kurzwellen-Drahtantennen selbst gebaut E. T .Red, R. Birchel, DJ9DV, 2003, 134 S. 18.90 B-0163 18.90

Wellenausbreitung in der Nachrichtentechnik Prof. Dr. E. Vogelsang, 2003, 76 S. B-0465 9.80

100 Tipps und Tricks für den Funkamateur K. Böttcher, DJ3RW, 2003, 112 S. V-3971 12.80

Hochfrequenz-Transistorpraxis F. Sichla, 2008, 278 S., 309 Abb., Paperback, 17,5 x 25,5 cm B1538 24,-

B-0481

HF-Module in 50-Ohm-Technik Eric T. Red u. R. Birchel, DJ9DV, 132 S. 2003 B-0422 18,90

ABC der Schwingkreis-Praxis F. Sichla, 128 S., 125 Abb., 16,5 x 23 cm, V-8453 15,-

Funkempfänger-Schaltungstechnik praxisorientiert E. T. Red, 2003, 114 S. B-0341 16,80

HF-Arbeitsbuch
Daten, Fakten,
HF-Grundschaltungen,
50-Ohm-Technik
E. T. Red, 2005, 212 S.
B-1372 22,80

Amateurfunk – selbst gebaut
M. Perner, 2005, 88 S.
V-8108 12,80

Das QRP-Baubuch Entwurf und Bau von Amateurfunkgeräten Peter Rachow, 200 S. V-3270 18,30

HF-Technik mit dem NE/SA 602/612 F. Sichla, 142 S., 198 Abb., 21 x 28 cm B-0546 19,8

Direktmischempfänger
M. Arnold, 116 S., 15,5 x
25,3 cm
B-0586
15,80

Empfangsprinzipien u. Empfängerschaltungen F. Sichla, DL7VFS, 136 S., 158 Abb., 2008 V-8422 15.50

en u. Einseitenbandtechnik für den Funkamateur
F. Hillebrand, DJ4ZT, 110
S., Reprint RPB 117/118
15,50
B-049X
15,80

Längstwellenempfang mit dem PC H. Lutz, beam-Verlag, 2004, 68 S., 17,5 x 25,5 B-0473 9,80

Zusatzgeräte fürs Shack – selbst gebaut Perner, 320 S., 2007, mit CD (Layouts u. Software) D-0518 19,90

DUBUS Technik VI

J. Kraft, DL8HCZ
(Hrsg.), 2004, 394 S.

Z-0001

25,

DUBUS Technik VII

J. Kraft, DL8HCZ
(Hrsg.), 2006, 388 S.

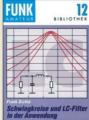
Z-0002

25,

CQDL-Spezial
Welt der Schaltungen
CQDL-Sonderheft, 2003,
100 Seiten, DIN A4
D-9904 6,80

Leistungsanpassung in der Funktechnik L. Borucki, DL8EAW, 2005, 64 Seiten V-8183 8,80

FUNKAMATEUR-Leserservice


Einfache IC-Empfängerschaltungen Frank Sichla, DL7VSF. 3. erw. Aufl., 104 Seiten X-9028 5.-

Der Dipol in Theorie und Praxis Karl H. Hille, DL1VU. 80 S., 12.0 x 17.5 cm X-9060

Transistoren und FETs in der Amateurpraxis Frank Sichla, DI 7VSF 92 Seiten, 12,0 x 17,5 cm X-9087

Schwingkreise und LC-Filter in der Anwendung Frank Sichla, DL7VSF. 96 Seiten, 12,0 x 17,5 cm X-9117

Audioverstärker-ICs von 100 mW bis 100 W Frank Sichla, DI 7VSF 96 Seiten, 12,0 x 17,5 cm X-9125

Viel Spaß beim Contest M. Höding, DL6MHW, 128 S., 12,0 x 17,5 cm, 2003 X-9133

Windom- und Strom summen-Antennen Karl H. Hille, DI 1VU. 120 S., 12,0 x 17,5 cm X-9141

Aktive Mischer in der Amateurfunkpraxis Frank Sichla, DL7VSF. 96 Seiten, 12,0 x 17,5 cm X-915X

nateurfunkgeräte in Röhrentechnik

Englisch für **Funkamateure** Colin R. Hall, GM3JPZ 96 Seiten, 12,0 x 17,5 cm X-9168

Sferics - faszinierende natürliche Radiowellen W. Friese, DG9WF, 80 S., 12.0 x 17.5 cm X-9176

Empfangssysteme zum Detektieren von Gewittern W. Friese, DG9WF, 144 S.,

106 Abb., 64 Tab., 2007 X-9184

Technik & RX-Porträts T.Red: R. Birchel, DJ9DV. 200 S., DIN A4, 2005 B-0511

Amateurfunkgeräte von Yaesu Musen R Rirchel 220 S Taschenbuch, 2003 B-0449 11.80

Amateurfunkgeräte von Icom R. Birchel, 254 S. Taschenbuch, 2004 B-0503 13.80 **Amateurfunkgeräte**

Amateurfunkgeräte von Kenwood R. Birchel, 180 S Taschenbuch, 2006 B-052X 9.80

KW-Amateurfunkgeräte in Röhrentechnik

R. Birchel, D.19DV, 2003. 374 Seiten B-0414

CQDL-Spezial Messen und Entstören CQDL-Sonderheft, 2005, 104 Seiten, DIN A4 D-9908 7.50 Messen unc Entstören II

CQDL-Spezial Messen u. Entstören II CQDL-Sonderheft, 2007, 116 Seiten, DIN A4 D-9912

Messpraxis für Empfänger, Sender u. Antennen F. Sichla, 2008, 102 S.,

B-1514

HF-Messungen für den Funkamateur Teil 1 H. Nussbaum, DJ1UGA, 2004, 76 S. 90 Abb., 17,5 x 25,5 cm 14.90

HF-Messungen für den Funkamateur Teil 2 H. Nussbaum, DJ1UGA, 2006, 112 S V-5198 12.80

HF-Messungen für den Funkamateur Teil 3 H. Nussbaum, DJ1UGA, 2006, 152 S. 14.80 V-8248

Preise und Daten II H. P. Leitner und K. Theurich, 2006, 304 S., 12,0 x 17,5 cm X-9532 ietzt statt 12.-

Echolink für **Funkamateure** M. Wöste, 104 S., 131 Abb. 16 x 23 cm, 20Ï5 V-8124 12.80

Software für Funkamateure (2) Dr. W. Hegewald (Hrsg.), 2006, 160 S., mit CD X-9346

QRV auf Langwelle 135.7 bis 137.8 kHz Wensauer, DK1KO: Kliiß. DF2BC, 2006, 104 S

CQDL-Spezial: SDR & D-STAR DARC Verlag, 96 S., DIN A4, 2008

CQDL-Spezial: Contest Sport im Amateurfunk DARC Verlag, 100 S., DIN A4, 2004 D-9909

CQDL-Spezial: Satellitenfunk DARC Verlag, 96 S., DIN A4, 2006

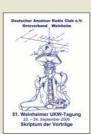
CQDL-Spezial: Packet Radio & Co. DARC Verlag, 80 S., DIN A4, 2005 D-9907

Amateurfunk mit PC und Soundcard Ein Praxis-Handbuch, N. Schiffhauer, DK80K V-3777

Jahrbuch für den Funkamateur 2009 H. Schwarz, DK5JI, 624 Seiten 13.50 D-0570

Skriptum der 42. UKW-Tagung 1997 Sammelband der Vorträge, DIN A4 U-1997

Skriptum der 45. UKW-Tagung 2000 Sammelband der Vorträge, DIN A4 U-2000


Skriptum der 47. UKW-Tagung 2002 Sammelband der Vorträge, DIN A4 U-2002

Skriptum der 48. UKW-Tagung 2003 Sammelband der Vorträge, 208 S., DIN A4 U-2003

Skrintum der 49. UKW-Tagung 2004 Sammelband der Vorträge, 160 Seiten, DIN A4 U-2004 12.-

Skriptum der 51. UKW-Tagung 2006 Sammelband der Vorträge, 154 Seiten, DIN A4 U-2006 12.-

Skriptum der 52. UKW-Tagung 2007 Sammelband der Vorträge, DIN A4 U-2007

Skriptum der 53. UKW-Tagung 2008 Sammelband der Vorträge, DIN A4, 140 S. 12.- U-2008 10.-

Afu-Lehrgang für Klasse A · Technik E. K. W. Moltrecht DJ4UF, 2002, 312 S V-3892 17.80

Betriebstechnik und Vorschriften E. K. W. Moltrecht, DJ4UF, 148 S. V-8033

Afu-Lehrgang Klasse E Technik für die Novice Licence, Moltrecht DJ4UF, 2006, 240 Seiten

Fragenkatalog KI. A + E Fragenkatalog Klasse E Betriebliche Kenntnisse und Kenntnisse der Vorschriften, 92 S., BNetzA, 2006 Z-0022

Technische Kenntnisse, 50 S., BNetzA, 2006

Fragenkatalog Klasse A Technische Kenntnisse, 138 S., BNetzA, 2007 Z-0024

CQDL-Spezial: Auf die Kurzwelle! DARC Verlag, 84 S., DIN A4, 2003 D-9906

Mehr als ein Hobby E. Stumpf-Siering DL2VFR, 248 S., 2006 D-0488

DARC-Kurzwellen-DX-Handbuch
E. Stumpf-Siering, DL2VFR, 430 S. 18.50 D-0372

Das Diplom-Handbuch E. Stumpf-Siering DL2VFR, 356 S., 2004, DARC-Verlag D-0410

Handbuch Amateurfunkpeilen Peter Gierlach, DF3KT, 2003, 139 S. mit Abb. D-0364

CW-Handbuch für Funkamateure Grundlagen und Technik, Otto Wiesner, DJ50K V-3262

Messtechnik in der Praxis

Minimaler Aufwand -Max. Moglichlichkeiten. H. Langkopf, DL20BF. 256 S., 2006 D-0461

Teletype Digimodes Digitale Betriebsarten in Theorie und Praxis P. Kaminski, 2008, 148 , 17,5 x 22,5 cm 19.80 B-1521

Leitfaden zur Amateurfunkgesetzgebung Chr. Hildebrandt, DO1JUR u.a., 215 S., 2008, D-0549 8.50

ihr gerettet!

B. Drobnica, DJ6SI 2. Aufl., 96 S., DIN A5 X-9524 7.70

Reif für die Insel: IOTA - Erster funkerischer Reiseführer

E. Stumpf-Siering, DL2VFR, 240 S., 2007

Energiesparen leicht gemacht: Die heimlichen Stromver-

braucher im Haushalt Th. Riegler, 2008, 120 S. V-8415

Elektrotechnik

Grundwissen Elektrotechnik L. Stiny, 528 Seiten, 2005, Franzis Verlag

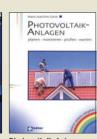
Messtechnik in der Praxis M Fhner 1 Auflage 2007, 232 Seiten, E-1676

Dezibel-Praxis -Richtig rechnen mit dB, dBm, dBi, dBc und dBHz

Sichla, 2007, 96 S. 12,80 F-0946 B-0562

Messen, steuern und regeln mit Word & Excel H. J. Berndt, B. Kainka, 2005, 264 Seiten, mit CD-ROM

SMD-Praxis für Hobby-Elektroniker M. Rauhut, 2005, 64 Seiten V-8116


Netz- und Ladegeräte selbst gebaut K. Böttcher, DK3RW, 176

S. 329 Abb. V-8140 19,80

Solar-Dachanlagen

Solar-Dachanalgen selbst planen und installieren B. Hanus, 128 Seiten, 114

Abb., 2007 F-1465

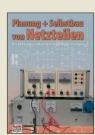
Photovoltaik-Anlagen planen, montieren, prüfen, H.-J. Geist, 1. Auflage, 2007, 160 Seiten, 19.90

Hochfrequenz-Messpraxis Sichla, Franzis-Verlag, 2007. 151 Seiten

Experimente mit selbstgebauten Lasern T. Rapp, 2007, 300 S. F-9262

Wie misst man mit dem Oszilloskop?

D. Benda, 3. Auflage, 2994, 285 Seiten, 150 Messbeispiele


Handbuch der analogen Elektronik B. Kainka, 226 S., 388 Abb., 17.5 x 25 cm B-0579

Standardschaltungen der Digital- u. Analogtechnik Franzis Verlag, 2007, 310 Seiten F-1984

Gerät Perner u. Sichla, 2006, 168 S., 16,5 x 23,0 cm V-823X

Planung und Selbstbau von Netzteilen B. Kaschner, 2007, 136 S., 159 Abb V-8392

Blitz- u. Überspannungsschutz für Antennen F. Sichla, 2. aktual. Aufl., V-8051 9.80

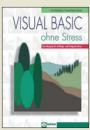
Richtig messen mit dem USB-Scope F. Sichla, Franzis Verlag, 2008, 176 Seiten F-3070

Neue professionelle Schaltungstechnik 4 Bücher als Paket, über 1500 S., bisher 119,80 F-2394 29.95

PC-Elektronik Labor H. Bernstein, Franzis Verlag, 6, Aufl., 2008. 1464 Seiten F-3154

miertechniken für AVR-Mikrocontroller M. Schwabl-Schmidt, 2007, 214 Seiten E-1768

AVR-Microcontroller-Lehrbuch R. Walter, 2004, 224 S. mit CD-ROM Z-0010



PICs für Einsteiger Tipps u. Tricks rund ums PICkit 1 Flash Starter Kit Mumm, '06, 160 S., m. CD

Empfang · BOS · TV · Rundfunk · SAT · Röhrentechnik

Basiskurs R8C/13
B. Kainka, 232 S., 17 x
23,5 cm, 2008, mit CD
E-1775
39.80

Visual Basic ohne Stress K. Diedrich; F.-P. Zantis, Elektor-V., 2005, 272 S. E-1508 36,

Digital-Radio -Alles über DAB, DRM und Web-Radio Th. Riegler, 136 S., Siebel-Verlag 2004 S-6385 14.80

DRM Digital Radio Mondiale Th. Riegler, 125 S., 14,5 x 21,0 cm, Siebel-Verlag, 2006 S-6504 14.80

Funk-Scanner und Abhör-Empfänger
H. Kuhl, 2002,
480 S., 14,5 x 21,0 cm
S-0491 17,90

Zusatzgeräte für den Funkempfang H. Kuhl/W. Siebel, 4. Auflage, 2000, Siebel-Verlag, 288 S. S-1793 15 90

Antennenpraxis Scanner-Empfang So hören Sie mehr Th. Riegler, 136 S., 179 Abb., 2008, DIN A5 S-6718 14.80

Tipps und Tricks zum Scanner-Empfang H. Garbe, 2007, 112 S., 14,5 x 21,0 cm S-6572 12,80

Handbuch Kurzwellenempfänger: Besser bedienen – mehr hören Riegler, 1. Aufl., Siebel-Verlag., 2009, 128 S. S-9999 18.80

Aufbau und Technik des digitalen BOS-Funks C. Linde, Franzis Verlag, 2008, 192 Seiten F-2165 29,95

BOS-Funk Band 1 Grundlagen, Geräte, Betriebstechnik, Funkverkehr. M. Marten, 5. völlig neubearbeitete Aufl. 2006, 288 S. S-9991 15.90

BOS-Funk Band 2 Ausgabe 2007/2008 Funkrufnamen, Kanäle, Karten, M. Marten, 408 S. S-6589 16.91

Spezial-Frequenzliste Band 1: Grundlagen M. Marten, 2007, 156 S. S-6640 15,-

Spezial-Frequenzliste Band 2: 2007/2008 M. Marten, 2007, 544 S. S-6657 18,90

Kurzwellenempfang mit dem PC R. Zierl, 2006, 152 S., 210 Abb., 14,5 x 21 cm S-6539 15.80

Fernsehen und Radiohören mit dem PC Th. Riegelr, 2006, 112 S., 203 Abb., 14,5 x 21 cm V-8280 14,80

Sferics-Emfang Band 1 W. Friese, 134 Seiten, 90 Abb., 2005

Withdoor Harthed Visiting

Sferics-Emfang Band 2
W. Friese, 150 Seiten,

nd 1 Sferics-Emfang Band 2 W. Friese, 150 Seiten, 156 Abb., 2006

Sfericsempfang Band 3 W. Friese, 2007, 124 S. H-5766 15.-

UKW-Sprechfunk-Handbuch: 27 MHz - 275 GHz M. Marten, 2006, 384 S. 14,8 x 21 cm S-6156 16,90

Antennen-Ratgeber – Empfangsantennen für alle Wellenbereiche G. Klawitter, 6. Aufl., Siebel-V., 2005, 188 S. S-613X 13,90

Flugfunk - Kommunikation und Navigation in der Luftfahrt M. Marten, 4. aktual. Aufl., 2005, 384 S. S-6245

Seefunk auf UKW, Lang-, Mittel- und Kurzwelle M. Marten, 488 S., 2008, 14,8 x 21 cm S-6695 23.50

emprang mit dem Computer R. Zierl, 2007, 120 S., 239 Abb. S-6626 14,50

Webradio und Web-TV
Technik, Software,
Stationen und
Empfangspraxis
Th. Riegler, 2008, 128 S.
S-6701 14.50

Das große Handbuch der Satelliten-Frequenztabellen T. Riegler, 2005, 224 S., 16,5 x 23,0 cm mit CD V-8167 17,80

Piratensender
W.D. Roth, 2004, 288 S.,
Die Story der See- und
Alpensender u. der illegalen Rundfunkpiraten
S-6377 13.90

Not- u. Katastrophenfunk auf Kurzwelle Hilfsorganisationen und ihre Frequenzen Klein-Arendt, 2006, 216 S. S-6555 17,80

Wetterbilder und -daten selbst empfangen Th. Riegler, 2. Auflage, 112 S. mit CD-ROM V-3998 1780

SAT-Spionage für Insider Mass/Szentesi, 2005, 150 Seiten F-3088 19.9

Theorie und Praxis der Kurzwellenausbreitung G. Klawitter, 1. Auflage, Siebel-Verlag., 2008, 160 S., 169 Abb., mit CD-ROM

und Mittelwelle
Empfangspraxis, Geräte,
Sender und Programme
Th. Riegler, 2007, 122 S.,
136 Abb.
S-6633
15.-

Moderne KW-Empfänger Portable u. stat. Geräte für den KW-Empfang R. Zierl, 2007, 152 S. S-6596 17,50

Software Defined Radio B. Kainka, 2008, 174 S., 14 x 21 cm E-1928 29.80

Radio-Baubuch: Vom Detektor zum DRM-RX B. Kainka, 208 S., 2006, 14 x 21 cm E-1605 29,80

Röhren-Taschen-Tabelle 3000 Röhren inkl. USund Wehrmachtstypen Schwandt, 284 S., 2006 F-4548 19,95

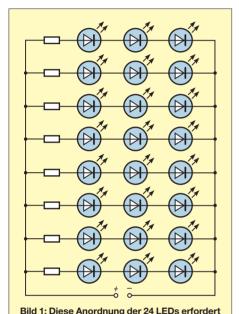
Neues aus Jogis Röhrenbude J. Gittel, 2005, 256 Seiten F-3657 24.95

Schaltungen rund um die Audiotechnik Sammlung von Artikeln aus dem Elektor, 288 S. E-1524 34.80

Audioschaltungstechnik Verstehen · Entwerfen · Bauen R. Sontmeier, 271 Seiten E-1540 34.80

Röhren-Projekte
von 6 bis 60 V
B. Kainka, 2003, 154 S.,
14 x 21 cm
34,80 E-1427 27,90

Amateurfunkpraxis


Arbeitskreis Amateurfunk & Telekommunikation in der Schule e.V.

Bearbeiter: Wolfgang Lipps, DL4OAD Sedanstr. 24, 31177 Harsum E-Mail: wolfgang.lipps@aatis.de

■ Ideen rund um Leuchtdioden

LED-Cluster

Auf einem Flohmarkt konnte ich 500 blaue LEDs für einen geringen Betrag ersteigern. Sie sollten wohl wegen unterschiedlicher Helligkeit entsorgt werden, doch für Anwendungen

(bei blauen LEDs mit 3 ,6 V/20 mA) bei einer Spannungsversorgung von 12 V acht Widerstände zu je 68 Ω .

sorgungsspannung von $5 \times 3,6 \text{ V} = 18 \text{ V}$. Der Strombedarf beträgt dann pro Anordnung 100 mA und ist somit unkritisch. Oder sämtliche LEDs werden parallel geschaltet, wofür bei 3,6 V allerdings 500 mA zur Verfügung stehen müssten. Beide Möglichkeiten sind akzeptabel. Nun waren aber im Vorfeld schon einige LEDs durch die Tests ausgefallen, sodass jedem Schüler nur noch 24 Stück zur Verfügung standen.

Welche Möglichkeiten boten sich nun an? Naja, das klingt nach vier Reihen mit je sechs LEDs oder nach sechs Reihen zu je vier LEDs. Da für beide Anordnungen der Dauerbetrieb mit Batterien zu teuer gekommen wäre, musste nach einem preisgünstigen Steckernetzteil gesucht werden. Ein Elektronikschrotthändler bot Steckernetzteile (26 V/100 mA, gemessen 28 V) an. Bei 20 Stück konnte noch ein Sonderpreis unter 1 € ausgehandelt werden. Ein Spannungsregler 78L24 erlaubt maximal 100 mA, zwei kleine Kondensatoren (sie unterdrücken eventuelles Schwingen des Spannungsreglers) und ein kleiner Elko fanden sich in der Bastelkiste.

Somit drängte sich ein Aufbau nach Bild 2 förmlich auf, bei dem 80 mA ausreichen. Für solche Aufbauten bieten sich Leiterplatten mit Punktraster an, die recht preisgünstig bei allen Elektronikversandhäusern angeboten werden. Bestückung bzw. Verdrahtung sind mit ihnen übersichtlich und rasch erledigt. Es ist bei diesen Platinen nicht zwingend erforderlich, die LEDs auch mechanisch so anzuordnen, wie es der Schaltplan in Bild 2 zeigt. Einige Schüler

Inneren. Je nach Polung leuchtet dann die rote oder die grüne LED und zeigt so den Plus- oder Minuspol an der Prüfspitze an.

Aus Unachtsamkeit hatte ich nun die falschen LEDs bestellt, nämlich solche mit drei Anschlüssen. Bei diesen lassen sich die rote und die grüne LED getrennt ansteuern. Werden beide gleichzeitig angesteuert, so ergibt sich Gelb als Mischfarbe. Ein Umtausch war nicht möglich, weshalb sich nur ein Umbau anbot.

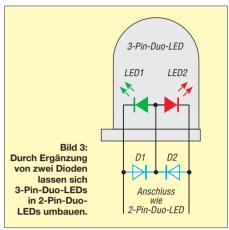


Bild 4:
Der Musteraufbau zeigt
die Möglichkeit
aus Bild 3,
wie man eine
"Trio-LED"
zur "Duo-LED"
umbaut.
Foto: DL2MAJ

Dazu wurde der mittlere LED-Anschluss gekürzt und zwei Dioden so eingefügt, dass sich nun die gewünschte Funktion ergab. Die Bilder 3 und 4 zeigen die Polung der zusätzlichen Dioden.

Im Foto wurden zwei SMD-Dioden LL4148 eingesetzt. Bei bedrahteten Dioden 1N4148 sollten deren Anschlüsse ebenfalls gekürzt und die Dioden schräg montiert werden.

Wolfgang Lipps, DL4OAD

AATiS-Wettbewerb: SMD-Schaltungen mit geringem Aufwand

Der AATiS schreibt einen Schaltungswettbewerb aus. Es sollen Empfängerschaltungen auf einer oder mehreren BB-Platinen aufgebaut werden, bei denen mindestens ein leicht erhältliches SMD-Bauteil eingesetzt wird. Die BB-Platinenreihe des AATiS zeichnet sich durch einheitliche Größe von 55 x 55 mm² und dadurch aus, dass alle Bauteile auf die Kupferseite zu löten sind. Bis 1.5.09 sind nur die Schaltung und ein Aufbaufoto bei Helmut Berka, DL2MAJ (dl2maj@aatis.de), einzureichen. Danach werden die aufgebauten Schaltungen zur Prüfung durch die Wettbewerbsleitung angefordert. Der Autor Matthias Rauhut, DF2OF, hat fünf Exemplare seines Buches "SMD-Praxis für Hobbyelektroniker" als Preise gespendet.

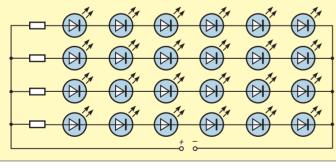


Bild 2: Dieser LED-Cluster ist für 24 V ausgelegt, wobei 100-Ω-Widerstände eingesetzt werden sollten.

im Unterricht schienen sie bestens geeignet. Ihre Werte wurden ausgemessen. Bei einer Spannung von 3,6 V konnten genau 20 mA gemessen werden – das entsprach den Erwartungen. Jeder der 20 Schüler sollte 25 LEDs bekommen. Doch wie ordnet man diese an? Sämtliche LEDs in Reihe ergäben eine Spannung von $25 \times 3,6$ V = 90 V. Dieser Wert ist nicht nur ungewöhnlich, sondern aus Sicherheitsgründen im Unterricht auch nicht zugelassen.

Als Alternative bot sich eine Anordnung von fünf Zeilen zu je fünf LEDs an, also eine Ver-

ordneten ihre 24 LEDs in einer Reihe an, jedoch unter Beibehaltung des Schaltplans nach Bild 2.

Multicolor-LED umbauen

Eine der ersten Schaltungen, die meine Schüler im Wahlpflichtunterricht aufbauen, ist ein Polprüfer. Zunächst werden dazu eine rote und eine grüne LED benötigt. Danach wird ein Prüfstift gebaut, in dessen Gehäuse aus einem leeren Textmarker nur eine 5-mm-LED hineinpasst. Diese Duo-LEDs bestehen aus zwei antiparallel angeordneten Leuchtdioden in ihrem

CB- und Jedermannfunk

Bearbeiter: Harald Kuhl, DL1ABJ Postfach 25 43, 37015 Göttingen E-Mail: cbjf@funkamateur.de

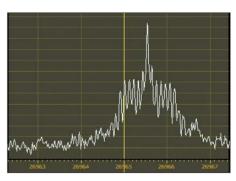
■ 11 m aus der Hand

Eine zeitlang waren sie aus dem Angebot der Gerätehersteller fast verschwunden, doch inzwischen sind wieder einige Modelle verfügbar: CB-Handsprechfunkgeräte. Das Intek H-512 Plus [1] funkt auf bis zu 80 Kanälen in FM sowie auf 40 Kanälen in AM und lässt sich durch Programmieren den gesetzlichen Regelungen (*Ländernormen*) dieser Länder anpassen: Deutschland, Frankreich, Großbritannien, Italien, Polen, Spanien sowie CEPT (40 Kanäle FM 4 W). Bei Auslieferung ist das Gerät auf CEPT programmiert; in Österreich darf es wegen der Programmierbarkeit trotzdem nicht auf CB-Sendung gehen.

Das Intek H-512 Plus ist eine im Funktionsumfang reduzierte Version des H-520 Plus mit Basisausstattung.

Auf den ersten Blick erinnert das Intek in seinem robusten schwarzen Kunststoffgehäuse im Format 60 mm × 135 mm × 37 mm (Breite × Höhe × Tiefe, ohne Bedienelemente; Masse: 185 g, ohne Antenne und Batterien) an ein professionelles Betriebs- oder eines der besseren PMR446-Handfunkgeräte. Auf der Frontseite liegen fünf Gummitasten zur Bedienung, eine beim Sendebetrieb leuchtende LED, eine Mikrofonöffnung sowie ein Lautsprecher (300 mW/8 Ω). Das bei der Bedienung kurz grün hinterbeleuchtete LC-Display (Format: 28 mm × 17 mm) informiert über den aktuellen Sendeempfangskanal und weitere Betriebszustände, wie die gewählte Modulationsart, die eventuell aktivierte Tastensperre sowie den Ladestand der Akkumulatoren oder Batterien. Sechs Mignon-Zellen fasst das auf der Rückseite hinter einer abnehmbaren Klappe zugängliche Batteriefach. Auf der Oberseite liegen neben der BNC-Antennenbuchse zum Anschluss der mitgelieferten Gummiwendelantenne (Länge: 195 mm) oder eines anderen Strahlers ein Drehschalter zum An- und Ausschalten sowie zum Einstellen der Lautstärke. Möchte man sich nicht auf die Squelch-Automatik des H-512 Plus verlassen, ist diese über einen zweiten Drehschalter deaktivierbar und die Rauschsperre lässt sich nun manuell auf der gewünschten Ansprechschwelle fixieren. Hinter einer Gummiabdeckung liegen je eine 3,5- und eine 2,5-mm-Klinkenbuchse (mono) zum Anschluss etwa eines Lautsprechermikrofons.

Die Bedienung des Intek ist buchstäblich kinderleicht und lässt ohne ständigen Blick in die Bedienungsanleitung keine Fragen aufkommen: Über die beiden Pfeiltasten gelangt man zum gewünschten Kanal und nach einem Druck auf die seitliche PTT-Taste startet die Sendung, was eine dann rot leuchtende LED neben dem LC-Display bestätigt. Die Taste A/F schaltet zwischen AM und FM, während der Drücker H/L die Sendeleistung von 4 W auf 1 W reduziert und so die Batteriebetriebszeit steigert. Der sonst bei der Bedienung hörbare Quittungston ist abschaltbar. Unterwegs verhindert die mit einem langen Druck aktivierbare Tastensperre den versehentlichen Kanalwechsel. Auf einen angesichts von 80 FM-Kanälen hilfreichen Kanalsuchlauf verzichtet das H-512 Plus. Interessant ist das optionale Zubehör, insbesondere der Mobiladapter CAR-500: An die Unterseite des Intek gesteckt, lässt sich nun über eine PL-Buchse ein etwa zur Magnetfußantenne auf dem Autodach führendes RG58-Kabel anschließen. Die Stromversorgung aus dem 12-V-Bordnetz läuft über einen integrierten Stecker für die Zigarettenanzünderbuchse. Beim Test wurde das H-512 Plus so im Handumdrehen zum Mobilfunkgerät und ist damit ein willkommener Begleiter auf der nächsten Urlaubsfahrt.


■ Grenzen überwinden

Das Funkhobby schafft Verbindungen über Grenzen hinweg. Damit dies auch in der Urlaubszeit ohne rechtliche Komplikationen klappt, wenn CB-Funker mit ihrem Mobiloder Portabelgerät etwa auf Reisen ins Ausland gehen, gibt die Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen (BNetzA) an die 11-m-Funker mit Wohnsitz in Deutschland seit einigen Jahren eine so genannte CB-Funk-Berechtigungskarte (Englisch: Circulation Card) mit zeitlich begrenzter Gültigkeit heraus. Das bisher gültige Dokument war abgelaufen, doch rechtzeitig zum Jahreswechsel hat die BNetzA ein neues veröffentlicht: Jeder Interessent kann es unter [2] kostenlos als PDF-Datei aufrufen, ausdrucken und zu den Reiseunterlagen nehmen.

Die Berechtigungskarte ist auf Deutsch, Englisch sowie Französisch verfasst und laut offizieller Formulierung eine multilaterale Vereinbarung über das freizügige Mitführen und

Oben liegen Buchsen zum Anschluss der Antenne sowie eines Lautsprechermikrofons. Auf der Rückseite ist der mitgelieferte Gürtelclip angeschraubt.

Das Bild zeigt ein Signal des Intek H-512 Plus im Spektrum; die Modulation war beim Testgerät in FM etwas zu leise. Bilder: DL1ABJ

Betreiben von mobilen/tragbaren Sendeempfangsanlagen im 27-MHz-Band (CB-Funkgeräte), für die keine Freizügigkeit durch eine CEPT-Empfehlung gilt. Die Vereinbarung gilt für einen Aufenthalt bis zu einem Monat in den Gastländern Belgien, Frankreich, Liechtenstein, Spanien sowie in der Schweiz. Sie bezieht sich ausschließlich auf CB-Funkgeräte, deren Konformität mit den grundlegenden Anforderungen nach Richtlinie 1999/5/EG (R&TTE-Richtlinie) erklärt wurde und mit einer entsprechenden CE-Kennzeichnung versehen sind. Auch nach früheren Bestimmungen in Deutschland zugelassene CB-Funkgeräte gehen mit auf die Reise, solange sie eine dieser Kennzeichnungen tragen: PR27, PR27D, PR27D-40, 27PR-FM, KAM, KFFM40, KFFM, AFM80, KFAM40, FM80, k/m, KF, K/... oder K/p.

In den genannten Ländern dürfen deutsche Urlauber ohne weitere Genehmigung CB-Funkgeräte (keine Feststationen) auf maximal 40 Kanälen (Kanal 1 bis 40) in den Betriebsarten FM, AM sowie SSB betreiben beziehungsweise im Reisegepäck mitführen; die relevanten Zollbestimmungen für den Im- und Export von Funkanlagen bleiben davon unberührt. Bei Funkstörungen hilft die Berechtigungskarte der BNetzA allerdings nicht: Die Telekommunikationsverwaltung des Gastlandes kann im Einzelfall die Erlaubnis zum Betreiben eines CB-Funkgerätes jederzeit widerrufen. Unbeschadet dessen bleibt die Erlaubnis zum Mitführen solcher CB-Funkgeräte in Kraft - eine Beschlagnahmung seitens der Behörden im Gastland ist demnach nicht zulässig. Letzteres gilt, solange das fragliche Gerät den deutschen Bestimmungen entspricht und nicht verändert wurde. Dieser abschließende Satz der Berechtigungskarte war offenbar nötig: Das Mitführen und die Benutzung externer HF-Leistungsverstärker ("Nachbrenner") ist streng verboten. Das Dokument geht nicht auf die in den genannten Ländern gültigen Bestimmungen hinsichtlich der Verwendung externer Antennen ein. Deutsche CB-Funker haben im Inland gute Möglichkeiten, durch den Einsatz effektiver Außenantennen ihre Funkreichweite zu erhöhen. Wie es darum in den hier erwähnten Urlaubsländern steht, veröffentlichen wir demnächst an dieser Stelle.

Bezugsquellen

- [1] Maas Funk-Elektronik, Elsdorf-Berrendorf: www.maas-elektronik.com
- [2] CB-Funk-Berechtigungskarte: www.bundesnetz agentur.de/media/archive/14992.pdf

Kurzwelle in Deutsch

Listo analogor doutsobenrachigor

Sendun	naloger deutschsprachiger igen auf Lang-, Mittel- und
Kurzwe	
UTC	Station – Frequenzen (kHz)
0000-0200	Deutsche Welle – 6075 (POR), 7120 (POR), 7285 (SLK), 9775 (ASC), 9655 (RRW), 11 690 (RRW)
0000-0100	Radio Ukraine International – 5830
0000-2400	Deutschlandradio Kultur – 990
0000-2400	DLF Köln - 153, 207, 549, 756, 1269, 1422, 6190
0005-0030	Radio Ö1 International – 7325 (So Mo 0000-)
0035-0100	Radio Ö1 International – 7325 (So Mo 0030-)
0105-0130	Radio Ö1 International – 9840 (So Mo 0100-)
0200-0400	Deutsche Welle – 6075 (GB-r + POR)
0230-0300	HCJB Global Quito – 9780 (für Amerika)
)300-0330	HCJB Global Quito – 9780 (Plattdeutsch, für Amerika)
0400-0600	Deutsche Welle – 6075 (POR; 0500- + GB-s), 9735 (GB-w), 13 780 (RUS), 17 800 (SLK)
0400-0415	RTL Radio – 1440 (Mo-Sa)
0400-0430	TWR Manzini – 3200, 4775
0400-0100	Deutschlandradio Kultur – 177
)415-0430	Missionswerk W. Heukelbach – 1440 (Mo-Fr; via RTL)
0415-0430	Stimme des Trostes – 1440 (Sa; via RTL)
0430-0445	Missionswerk Freundes-Dienst – 1440 (Mo-Fr; via RTL)
0430-0500	TWR Manzini – 3200, 4775 (Sa, So)
)445-0500	Missionswerk W. Heukelbach – 1440 (Sa; via RTL)
)445-0700	RTL Radio – 1440 (zeitweise relig. Sendungen)
)445-2300	ERF Radio Wetzlar – 1539
0500-0515	Missionswerk W. Heukelbach – 1440 (So; via RTL)
500-0600	WYFR Family Radio – 7730
520-0540	Radio Vatikan – 1530, 4005, 5965
545-0600	Radio Santec (Univ. Leben) – 1323
600-0800	Deutsche Welle – 6075 (GB-w + POR), 9545 (GB-w), 12 005 (RRW), 15 410 (RRW)
600-0700	Radio Ö1 International – 6155 , 13 730
0600-0615	Missionswerk Freundes-Dienst – 1440 (So; via RTL)
600-0632	Radio Ö1 International – 17 870 (Sa So -0630)
0600-0757	China Radio International – 15 245 , 17720
600-1200	Radio France Bleu Elsass – 1278 (Mo-Fr; Elsässisch)
0615-0630	Missionswerk W. Heukelbach – 1440 (So; via RTL)
0630-0700	Radio Bulgarien – 5900, 7400
700-0709	Radio Ö1 Intern. – 6155 , 13 730 (Sa So -0715)
700-0725	Radio Rumänien International – 7175, 9690
700-0730	Polskie Radio – 198
700-1930	Radio 700 – Das Europaradio – 6005 (Sa So –1900)
700-0800	Slowakischer Rdf. – Radio Patria – 702, 1017, 1098 (Mi, alle drei Wochen: 11.2., 4.3., 25.3.)
0715-0800	Radio Ö1 International – 6155 , 13 730
0730-0800	Radio Prag – 5930 , 7345
730-0830	IRIB Teheran – 15 085 , 17 590
0800-1000	Deutsche Welle – 6075 (GB-w), 9545 (GB-w),
0800-1000	9885 (NLA), 13 780 (GB-w), 17 520 (SLK) Radio Ö1 International – 6155 , 13 730
800-0827	Radio Slowakei International – 5915 , 6055
0820-0830	Radio Bukarest – 909 (So)
0830-0900	Radio Neumarkt (Targu Mures) – 1197, 1323, 1593 (So)
900-1000	Radio Joystick – 9510 (1. Sa/Monat; via SVK)
900-1100	Magyar Radio 4 – 873, 1188
000-1200	Deutsche Welle – 5905 (NLA), 6075 (GB-w), 13 780 (GB-w), 15 610 (SLK); -1100: 9865 (USA)
	1100-: 17770 (ASC)
000-1200	Radio Ö1 International – 6155 , 13 730
000-1200	Christliche Wissenschaft – 6055 (So;
000-1100	via Wertachtal) Hamburger Lokalradio – 6045 (1. So im Monat,
	via Wertachtal)
1000-1100	Stimme Russlands – 630 (Braunschweig), 1323, 1431 (Dresden), 1575, 9720, 15540
100-1130	Radio Prag – 7345 , 9880
100-1200	Radio Temeswar (Timisoara) – 630
100-1300	Stimme Russlands – 630 (Braunschweig), 1323,
130-1200	1431 (Dresden), 1575 Ev. Missions-Gemeinden – 6055 (Sa, So;
.150-1200	via Wertachtal)
130-1200	Radio Bulgarien – 11 700, 15 700
	Radio France Internationale – 1179 (Mo-Fr

1200-1400	Deutsche Welle – 6075 (GB-w), 13 780 (POR),
1200 1400	15 610 (SLK), 17 630 (GB-r)
1200-1400 1200-1215	Radio Ö1 International – 6155 , 13 730 Stimme des Trostes – 6055 (So; via Wertachtal)
1200-1215	Radio Rumänien International – 9690, 11 970
1200-1233	Radio Bukarest – 909 (Mo-Sa)
1230-1235	Radio Bayrak International – 6150 (Mo-Fr;
	Zeit variiert bis zu 10 min)
1230-1300	Polskie Radio – 198; 5965, 5975 (via Wertachtal)
1230-1325	Stimme der Türkei – 17 700
1300-1330	Radio Ö1 International – 17 855
1300-1330	Radio Azerbaijan Int. – 6111
1300-1330	Radio Prag – 6055 , 7345
1300-1400	MV Baltic Radio – 6140 (1. Sonntag im Monat;
1200 1400	via Wertachtal)
1300-1400	Radio Gloria International – 6140 (4. Sonntag im Monat; via Wertachtal)
1400-1600	Deutsche Welle – 6075 (GB-w), 13 780 (SLK),
1400-1000	15 275 (RRW), 15 640 (-1457 POR, 1457- GB-r)
1400-1600	Radio Ö1 International – 6155
1400-1500	RTR 1 (Radio Traumland) – 5965 (So; via Jülich)
1430-1457	Radio Slowakei International – 6055, 7345
1500-1515	Radio Vatikan – 5885, 7250 , 9645
1500-1515	Radio Pridnestrovye – 7370 (Mo-Fr)
1545-1600	Radio Pridnestrovye – 7370 (Mo-Fr)
1600-1800	Deutsche Welle – 6075 (GB-w, 1700- + POR),
	9545 (GB-r), 12055 (SLK), 12070 (RRW);
1600 1000	ab 1.3.: 13 780 (GB-w)
1600-1800	Radio Öl International – 6155
1600-1700 1600-1630	Radio O1 Intern. – 13 675 (via Sackville/CAN) Radio Prag – 5930
1600-1652	Stimme Russlands – 1215, 1323, 6145, 7290 ;
1000-1032	außer Do: 630 (Braunschweig), 1431, 1575
1600-1655	Stimme Koreas – 4405, 6285 , 9325
1600-1700	Stimme Russlands – Do Programm "Hallo Berlin":
	630 (Braunschweig), 1431 (Dresden), 1575 (Burg)
1600-1757	Radio China International – 5970 , 7155 (via ALB)
1630-1645	Radio Pridnestrovye – 7370 (Mo-Fr)
1630-1700	Polskie Radio – 7105 (via Wertachtal)
1630-1700	Radio Bayrak International – 6150 (So)
1652-1657	Radio Santec (Univ. Leben) – 1215, 1323, 6145,
	7290 ; außer Do: 630 (Braunschweig), 1431, 1575
1700-1727	(via Stimme Russlands) Radio Slowakei International – 5915 , 6055
1700-1727	Radio Serbien International – 7200
1700-1730	RTL Radio – 1440
1700-1800	Stimme Russlands – 630 (Braunschweig), 1215,
	1323, 1431, 1575, 6145, 7300
1700-1800	WYFR Family Radio - 17760
1715-1730	Radio Pridnestrovye – 7370 (Mo-Fr)
1730-1800	KBS World Radio – 1440 (via LUX)
1730-1800	Radio Bulgarien – 6200, 7400
1730-1800	Radio Prag – 5940 (via Krasnodar/RUS)
1730-1830	IRIB Teheran – 6205 , 7380
1800-2000	Deutsche Welle – 6075 (GB-w + POR), 9545
	(GB-r), 11725 (RRW), 12070 (GB-w), 15440 (POR)
1800-1830	HCJB Global Quito – 3955 (Plattdeutsch;
1000 1000	via Jülich)
1800-1830	RTL Radio – 1440 (zeitweise relig. Sendungen)
1800-1855	Stimme Koreas – 4405, 6285 , 9325
1800-1900	Radio Damaskus – 9330
1800-1900	Radio Santec (Univ. Leben) – 1215, 1323, 6145 ,
	7300 (So; via Stimme Russlands)
1800-1900	Radio Ukraine International – 7510
1800-1900	Stimme Russlands – 1215, 1323 (außer Di), 6145 ,
1800 1000	7300 (außer So; Mi -1843) WYFP Family Padio 21.455
1800-1900 1800-1957	WYFR Family Radio – 21 455 Radio China International – 6160, 7170 , 9615
1800-1957	WYFR Family Radio – 7490 (via Gavar/ARM)
1815-1830	Ev. Missions-Gemeinden – 1440 (Di; via RTL)
1815-1830	Stimme des Trostes – 1440 (vierzehntäglich
	Sa – 31.1., 14.2. etc - ; via RTL)
1830-1845	Missionswerk Freundes-Dienst – 1440 (via RTL)
1830-1900	HCJB Global Quito – 3955 (via Jülich)
1830-1900	Radio Santec (Univ. Leben) – 1323 (Di;
1020 1000	via Stimme Russlands)
1830-1900	Stimme Indonesiens – 11 785 (alt 9525)
1830-1925	Stimme der Türkei – 7205 Die Lutherische Stunde 1215 1323 6145
1843-1858	Die Lutherische Stunde – 1215, 1323, 6145 ,
1845-1900	7300 (via Stimme Russlands, Mi) Missionswerk W. Heukelbach – 1440 (via RTL)
1900-1915	Radio Schweden – 6005 (Mo-Fr; via Radio 700)
1900-1913	Radio Slowakei International – 5915 , 7345
1900-1927	Stimme Russlands – 630 (Braunschweig), 1215 ,
	1323, 1431, 1575, 6145 , 6235 (So + Di -1925;
	Mi -2000)
1900-1955	Radio Neumarkt (Targu Mures) – 1197, 1323,
-,,	

UTC	Station – Frequenzen (kHz)
1900-1955	Radio Rumänien International – 7125, 9525
1900-1955	Stimme Koreas – 4405, 6285 , 9325
1900-2000	Radio Kairo – 6255
1900-2000	Radio Taiwan International – 3955 (via UK)
1900-2100	Radio China International – 1440 (via LUX)
1900-2100	Radiostation Belarus – 7135 , 7360, 7390
	(ab 2000: 1170)
1901-1930	Radio Tirana – 1458 (Mo-Sa)
1920-1940	Radio Vatikan – 1530, 4005, 5885 , 7250
1925-1940	Missionswerk Freundes-Dienst – 630 (Braun-
	schweig), 1215 , 1323, 1431, 1575, 6145 , 6235
	(So + Di; via Stimme Russlands)
1943-1958	Missionswerk W. Heukelbach – 630 (Braun-
	schweig), 1215 , 1323, 1431, 1575, 6145 , 6235
	(via Stimme Russlands, außer Mi)
2000-2200	Deutsche Welle – 6075 (POR); -2100: 9510 (SLK),
	11 605 (RRW); 2100-: 11 935 (RRW)
2000-2005	Stimme von Kroatien – 1134, 6165
2000-2015	Radio Thailand – 9535
2000-2055	RAE Buenos Aires – 9690, 15 345 (Mo-Fr)
2000-2100	KBS World Radio – 3955 (via GB)
2000-2100	Radio Bulgarien – 6200 , 7400
2000-2100	WYFR Family Radio – 11 565
2030-2058	Stimme Vietnams – 3985 (via GB)
2030-2100	Polskie Radio – 5970 (via Jülich)
2031-2100	Radio Tirana – 7465 (Mo-Sa)
2100-2128	Stimme Vietnams – 3985 (via GB)
2100-2130	Radio Serbien International – 6100 , 7200 (außer Sa)
2100-2200	Radio Ö1 International – 6155
2100-2200	Radio Taiwan International – 3965 (via F)
2100-2200	Radio Ukraine International – 5830 (9785)
2134-2138	Radio Slovenija – 918
2200-2400	Deutsche Welle – 6075 (POR), 9475 (UAE),
	11 690 (RRW), 11 865 (POR); 2300-: 6050 (SLK)
2230-2300	HCJB Global Quito – 12040 (Plattdeutsch,
	für Amerika)
2300-2315	Radio Pridnestrovye – 6240 (Mo-Fr)
2300-2400	HCJB Global Quito – 12040 (für Amerika)
2345-2400	Radio Pridnestrovye – 6240 (Mo-Fr)

Sendungen im DRM-Modus ("Kurzwelle digital")

UTC	Station – Frequenzen (kHz)
0000-2400	DLF - 855 (Berlin)
0000-2400	WDR 2 Klassik – 1593
0000-2400	Deutschlandradio Kultur – 729 (Putbus/Rügen)
0000-2400	OldieStar Radio – 1485 (Berlin)
0000-0400	RTL DRM – 1440
0100-0400	Deutschlandradio Kultur – 177
0400-0415	Missionswerk W. Heukelbach – 1440 (So; via RTL)
0415-0430	Missionswerk Freundes-Dienst – 1440 (So; via RTL)
0430-0445	Missionswerk W. Heukelbach – 1440 (So; via RTL)
0500-2305	BR 5 aktuell München – 6085
0700-1700	RTL DRM - 1440
0730-1800	RTL DRM – 6095 (zeitweise relig. Sendungen)
0815-0830	Missionswerk W. Heukelbach – 6095 (via RTL)
0830-0845	Missionswerk Freundes-Dienst – 6095 (via RTL)
0900-1500	OldieStar Radio – 1575
1000-1300	Stimme Russlands – 693 (Berlin – Simulcast),
	13 760
1130-1200	HCJB Global Quito – 15 280 (Sa, So)
1200-1230	HCJB Global Quito – 15 280 (Plattdeutsch)
1230-1300	HCJB Global Quito – 15 280
1300-1330	Radio Prag – 9850 (Fr, Sa; via GB-w)
1500-1515	Radio Vatikan – 6060
1600-1700	Stimme Russlands – 693 (Berlin – Simulcast;
	außer Do), 9675
1700-1730	Radio Rumänien International – 5875 (via NOR)
1700-1800	Stimme Russlands – 693 (Berlin – Simulcast)
1715-1730	Missionswerk W. Heukelbach – 6095 (via RTL)
1730-1745	Missionswerk Freundes-Dienst – 6095 (via RTL)
1900-2000	Stimme Russlands – 693 (Berlin – Simulcast)
2030-2100	Polskie Radio – 3975 (via Wertachtal)
2300-0500	OldieStar Radio – 1575
2310-2330	Radio Vatikan – 1611

Die Deutsche Welle sendet von eigenen Relais und angemieteten Sendern aus folgenden Ländern: ASC - Ascension Island, GB - Großbritannien (Rampisham-r, Skelton-s, Woofferton-w), NLA – Niederl. Antillen (Bonaire), POR – Portugal (Sines), RRW – Rwanda (Kigali), RUS – Russland (Krasnodar), SLK – Sri Lanka (Trincomalee), UAE – Vereinigte Arabische Emirate (Dhabayya), USA – USA (Cypress Creek, SC)

Die am besten hörbaren Frequenzen sind in Fettdruck wiedergegeben. Hans Weber

1130-1200 Radio France Internationale – 1179 (Mo-Fr;

via Heusweiler/Saar)

BC-DX-Informationen

QSL aus Bhutan

Jetzt ist eine günstige Jahreszeit für den Empfang des Bhutan Broadcasting Service (BBS) auf der Kurzwelle 6035 kHz (100 kW) im 49-m-Band. Sendestart der Frühsendung ist um 0000 UTC, und das Signal ist bei günstigen Ausbreitungsbedingungen bis deutlich nach 0100 UTC in Europa aufzunehmen. Zu dieser Zeit bringt das Programm überwiegend Musik und Ansagen in Lokalsprachen. Empfangsberichte wurden über viele Jahre quasi nicht bestätigt, doch derzeit kommt regelmäßig eine Antwort per E-Mail vom Cheftechniker Dorji Wangchuk (dwangk@gmail. com). Auch alte Empfangsberichte über die früheren Sendungen auf 5025 oder 5030 kHz werden bestätigt, sodass man notfalls seine alten Stationslogbücher konsultieren sollte, wenn der neuerliche Empfang nicht gelingt.

Klein und fein: Radio Nederland gehörte dank seiner interessanten Programme und einer engen Hörerbindung schon in den 1950er-Jahren zu den beliebtesten europäischen Auslandssendern. In dieser Zeit gingen die ersten 100-kW-Sender in Betrieb.

,. QSL: Bü

■ Salomonen verlegt

Die Solomon Islands Broadcasting Corporation (SIBC) ist für mitteleuropäische BC-DXer eine Empfangsrarität. Offenbar hat die Station ihre bislang immerhin unregelmäßig gegen 1900 UTC auf 5020 kHz in Europa hörbare Sendung nun ins 31-m-Band auf die Frequenz 9541,5 kHz verlegt. Dort konnte die Station am späten Vormittag bereits mehrfach gehört werden, sobald die Deutsche Welle ihre Stammfrequenz 9545 kHz um 1000 UTC verließ. Allerdings belegt derzeit das neue englische Gemeinschaftsprogramm in DRM von BBC World Service und Deutscher Welle die Frequenz und begräbt die Empfangsmöglichkeit für die Salomonen.

■ Grönland sendet früher

Kalaallit Nunaata Radioa (KNR) sendet in diesem Winter eine Stunde früher und bringt sein Nachrichtenprogramm nun von etwa 2000 bis 2115 UTC auf 3815 kHz USB (200 W). Dies ist eine Programmübernahme durch eine Küstenfunkstation in Tasiilaq und der Empfang gelingt

Seit Dezember 08 senden der BBC World Service und die Deutsche Welle einen gemeinsamen DRM-Kanal in Englisch auf Mittel- und Kurzwelle, darunter abends auf 3995 kHz. Bild: HKu

sporadisch gegen Sendeschluss. Da die Station offenbar nicht täglich auf ihrer Kurzwelle sendet, führen meist erst mehrere Empfangsversuche zum Erfolg.

■ QSL-Post für St. Helena

Da etliche Empfangsberichte samt Beilagen auf dem Weg zu Radio St. Helena (11092,5 kHz USB, 1 kW) verloren gingen, gilt jetzt diese sichere Postanschrift: Radio St. Helena, P.O. Box 93, Jamestown, St. Helena Island STHL 1ZZ. Via Airmail via United Kingdom and Ascension. Das Postschiff RMS St. Helena bringt die Briefe auf dem Seeweg von Ascension nach St. Helena. Zuvor konnten die Briefe auch den Weg über Kapstadt nehmen, wo das Schiff ebenfalls regelmäßig anlegt. Vermutlich haben dort Postdiebe etliche Briefe abgefangen.

■ Äthiopien außerband

Radio Fana hat einmal mehr die Frequenz verlegt und ist nun wieder außerhalb des 41-m-Bandes zu hören: Die Station wurde ab etwa 1500 UTC bis zum Sendeschluss gegen 2100 UTC auf 6899,3 kHz (//6110 kHz) beobachtet. Die Frühsendung beginnt um kurz vor 0300 UTC. Die zuletzt genutzte Frequenz 7210 kHz schweigt.

■ Malaysia vormittags

Die *Voice of Malaysia* ist bei guten Ausbreitungsbedingungen mit dem englischen Programm bis 0830 UTC auf 15 295 kHz (250 kW) im 19-m-Band zu hören; danach folgt eine Sendung auf Malaysisch. Empfangsberichte bestätigt die Station mit einer QSL-Karte. Anschrift: Voice of Malaysia, P.O. Box 11272, 50740 Kuala Lumpur, Malaysia.

■ Opposition für Belarus

Radio Racja sendet jetzt täglich von 1530 bis 1730 kHz auf 3960 kHz (Sitkunai) im 75-m-

Radio Ukraine International (Deutsch um 1800 UTC auf 7510 kHz) bestätigt korrekte Empfangsberichte mit dieser neuen QSL-Karte. QSL: Li

BBC-Regionalstationen

In Großbritannien senden zahlreiche Regionalstationen der *BBC* auch auf Mittelwelle und sind bei Dunkelheit teilweise im deutschsprachigen Raum zu hören. Da auf vielen der mehrfach belegten Frequenzen auch britische Privatstationen aktiv sind, sollte man zur eindeutigen Identifizierung auf Stationsansagen achten.

BBC-Station kHz Radio Scotland South West 585 630 Radio Cornwall; Three Counties Radio 648 World Service 657 Radio Cornwall; Radio Wales 666 Radio York 729 Radio Essex Radio Hereford & Worcester 738 756 Radio Cumbria Radio Essex 765 Radio Kent; Radio Leeds 774 792 Radio Foyle 801 Radio Devon 810 Radio Scotland 837 Radio Cumbria Radio Devon; Radio Lancashire; 855 Radio Norfolk 873 Radio Norfolk Radio Wales 882 990 Radio Devon; Radio Nan Gaidheal 999 Radio Solent 1026 Radio Cambridgeshire; Radio Jersey 1035 Radio Sheffield Radio Derby; Radio Guernsey 1116 1161 Southern Counties Radio: Three Counties Radio 1260 Radio York 1296 World Service (DRM) 1332 Radio Wiltshire 1341 Radio Ulster/Northern Ireland

Radio Lincolnshire;
 Southern Counties Radio; Radio Wiltshire
 Radio Gloucestershire

1458 Radio Cumbria; Radio Devon; Radio Newcastle 1485 Radio Humberside; Radio Mer

Radio Solent

1485 Radio Humberside; Radio Merseyside;
 Southern Counties Radio
 1503 Radio Stoke

1530 Radio Essex 1548 Radio Bristol 1557 Radio Lancashia

1359

1557 Radio Lancashire1566 Radio Bristol/Radio Somerset

1584 Radio Nottingham; Radio Hereford & Worcester

1602 Radio Kent

Band (alternativ: 3955, 7380 kHz). Das Programm der weißrussischen Opposition bringt neben regionaler Popmusik vor allem Berichte aus Belarus sowie Stationsansagen und ist sehr gut zu hören.

■ CHU wechselt Frequenz

Die kanadische Zeitzeichenstation mit dem Rufzeichen *CHU* wechselt am 1.1.09 nach 70 Jahren die Sendefrequenz von 7335 nach 7850 kHz. Dieser Tage gehen zudem neue Sender in Betrieb, auch für die weiter genutzten Frequenzen 3300 und 14670 kHz. Der Frequenzwechsel war nötig, weil die ITU seit April 07 den Frequenzbereich 7300 bis 7350 kHz für Hörfunkdienste reserviert und sich Störungsmeldungen häuften. Empfangsberichte erreichen die Station per E-Mail (*radio.chu@nrc-cnrc.gc.ca*) und werden per QSL-Karte bestätigt.

Die Berichte und Illustrationen stammen von Friedrich Büttner (Bü), Harald Kuhl (HKu) und Michael Lindner (Li).

Ausbreitung Februar 2009

Bearbeiter:

Dipl.-Ing. František Janda, OK1HH CZ-251 65 Ondřejov 266, Tschechische Rep.

Die ruhige Sonne zum Jahresende 2008 war zwar, kurzfristig betrachtet, weniger erfreulich, aber perspektivisch gesehen eine günstige Nachricht. Nach langen und tiefen Minima folgen nämlich zumeist hohe Elfjahreszyklen. Beispiele der jüngeren Vergangenheit sind die Zyklen 18., 21. und 22., wo nach Minima in den Jahren 1942 bis 1945, 1975 bis 1977 und 1984 bis 1987 Maxima in den Jahren 1947, 1979 und 1989 folgten. Besonders der 19. Zyklus ist bei einigen Funkamateuren in guter Erinnerung, als nach dem Minimum in den Jahren 1953 bis 1955 das hohe Maximum im Herbst des Jahres 1957 folgte.

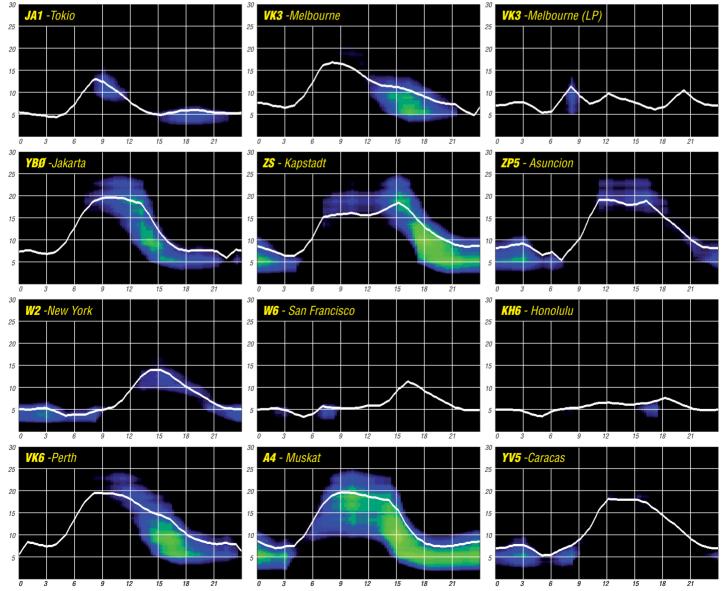
Nach SWPC wird sich die geglättete Sonnenfleckenzahl im Februar gegen R = 16,7 (mit Konfidenzintervall 1,0 - 32,4 oder genauer 12,0 - 21,4) bewegen. Nach IPS erwarten wir R = 5,5 und nach SIDC R = 7 nach der klassischen Methode oder R = 10 nach der kombinierten Methode. Für unsere Vorhersage benutzen wir R = 8 (resp. Solarflux SF = 70).

Für die Februar-Bedingungen der KW-Ausbreitung sind charakteristisch das noch währende Sonnenfleckenminimum und die langen Nächte auf der Nordhemisphäre der Erde. Kurzfristige Variationen erfolgen durch Änderungen der Parameter des Sonnenwindes. Ihre ziemlich genaue Vorhersage bis zu drei Tage im Voraus ist durch Messungen der Satelliten STEREO (http://stereo-ssc.nascom.nasa.gov/) möglich. Die monatlichen Vorhersagediagramme stehen an der gewohnten Stelle bei http://ok1hh.sweb.cz/Feb09/.

In der Übersicht nehmen wir diesmal das Ende des Novembers und den Dezember unter die Lupe. Bis zum 24.11.08 blieb das geomagnetische Feld ruhig. Eine interessante Störung begann in der Nacht zum 25.11.08 nach dem Durchgang der Erde durch die Grenze des interplanetarischen Magnetfeldes. Am Vormittag darauf konnte z. B. OK1AOZ im 18-MHz-Band H44MY arbeiten. Die Störung war weder lang noch stark und es kam in der Folge nicht einmal zur Verschlechterung der CONDX. Ein ähnliches Szenario gab es zwischen dem 3. und 13.12.08, wobei man zusätzlich den Einfluss des Meteorstroms Geminiden auf E_s-Erschei-

nungen verfolgen konnte. Die Winterperiode war auch für QRP-Experimente förderlich. OK 1IF funkte z. B. am 16.12.08 mit 1 mW mit UT5UIA im 80-m-Band (QRB 1098 km). Zum QSO-Zeitpunkt überschritt f_0F_2 im Reflexionspunkt 3,7 MHz, gleichzeitig war E_s .

Zum Schluss für Dezember die monatlichen Durchschnitte der gebräuchlichsten Indizes: Solarer Flux SF = 69,2 s.f.u., geomagnetischer Index aus Wingst $A_{\rm k}$ = 5,6. Der Durchschnitt der Sonnenfleckenzahl R = 0,8 besagt, dass die Sonnenscheibe meistens fleckenlos war. Nach Einsetzen in die Formel für den geglätteten Durchschnitt erhält man für den Juni 2008 R_{12} = 3,2, wobei es der 145. Monat des 23. Zyklus war. Das Minimum mit R_{12} = 8,0 war im Mai 1996, das Maximum mit R_{12} = 120,8 im April des Jahres 2000.


Als Berechnungsgrundlage dienen:

Sendeleistung: 100 W

TX- und RX-Antennen: Dipol, horizontal Empfangsumgebung: ländlich 300 Hz Parameter: Störabstand

Legende:

weiße Linie: MUF

A25/DL7DF: eine Amateurfunk-DXpedition nach Botswana

Ein Mittwochabend im Februar 2008 an der Klubstation DF0LI in Berlin: Ich war im Gespräch mit Sigi, DL7DF. Beiläufig fiel die Bemerkung, dass es in jenem Jahr etwas schwierig sei, ein geeignetes DXpeditionsziel zu finden, da einige seiner bisherigen Mitstreiter möglicherweise nicht dabei sein können. Genauso beiläufig antworte ich ihm, dass er in dem Fall auch mich fragen könne.

Vielleicht hätte ich Zeit, mitzufahren. Ich ahnte nicht, dass nur drei Tage später Ernst daraus wird. Kurzum, er stellte die konkrete Frage: "Kommst du im Herbst mit?" Ziel sollte Ende September Afrika sein. Mir blieb kaum Zeit Um die Organisation kümmerte sich vor allem Sigi und seine Gattin Sabine. Große Unterstützung erhielten wir von Prinz Bokpe von Allada, einem echten Prinzen aus Benin, der in Berlin lebt und hier ein Reisebüro betreibt.

Im April erhielten wir schließlich die Funklizenz. Leider mussten wir uns mit A25/DL7DF zufrieden geben. Dem Wunsch nach einem speziellen A25-Rufzeichen wurde nicht entsprochen, und wer die Verhältnisse in Afrika kennt, weiß, dass es nicht viel Sinn macht, dagegen zu intervenieren.

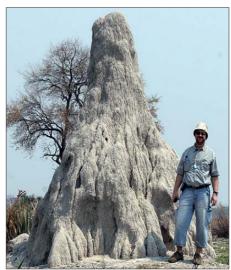
Da das Team nicht nur über sehr viel Erfahrung bei der Durchführung von DXpeditionen ver-

> Die Protagonisten der A25/DL7DF-Aktivität (v. l. n. r.): Sigi, DL7DF, Andy, DL5CW, Wolf, DL4WK, Manfred, DK1BT, Frank, DL7UFR, und Leszek, SP3DOI

fügt (allein auf der Internetseite www.dl7df.com sind mehr als 45 Aktivitäten seit 1993 aufgeführt), sondern auch auf einen ziemlich großen Material- und Gerätepool zurückgreifen kann, hielt sich der Stress mit den Vorbereitungen für mich in Grenzen. Praktisch brauchte ich nur meine Morsetaste mitzubringen. Alles Weitere war vorhanden.

Am Sonntag, den 23.9.08, ging es am späten Nachmittag von Berlin-Tegel mit den Zwischenstationen Madrid, Johannesburg, Gaborone nach Maun im Norden von Botswana. Von vornherein hatten wir eine Übernachtung in Johannesburg eingeplant, da der Zeitplan sonst ziemlich eng geworden wäre.

Das erwies sich als goldrichtig, denn bereits in Madrid hatte das ursprünglich für 1 Uhr geplante Flugzeug nach Johannesburg 8 h Ver-


zum Überlegen. Natürlich freute ich mich, dass ich in Sigis erfahrenem Team mitmachen sollte. Andererseits musste ich meine Frau Marina, DM5YL, noch davon überzeugen, mir grünes Licht für dieses Unternehmen zu geben. Entscheidend war letztlich der Hinweis auf meinen bevorstehenden runden Geburtstag. Schließlich wird man nicht jeden Tag 50, und so war die "Freistellung" nur eine Formsache.

Als Ziel hatten wir zunächst Ruanda ins Auge gefasst. Da jedoch nur ein paar Wochen später die erfolgreiche spanische 9X0R-Aktivität (Bericht folgt im FA) die Nachfrage der DX-Gemeinde an diesem DXCC-Gebiet vorerst befriedigt hatte, sahen wir uns nach einem anderen Land um. Die Wahl fiel schließlich auf Botswana. Ja, auch kein Gebiet unter den "Top Ten" der Most Wanted Liste, doch speziell auf den niederfrequenten Bändern und in digitalen Sendearten noch einigermaßen gefragt. Hinzu kam für mich, dass es politisch stabil und laut Kriminalitätsstatistik zu den sichersten Ländern in Afrika gehört.

■ Team mit Erfahrung

Zudem zählte noch das Argument, dass ich damit das erste Mal aus einem Land südlich des Äquators QRV sein würde. Das Team bestand aus der bewährten Truppe um DL7DF – also Manfred, DK1BT, Wolfgang, DL4WK, Sigi, DL7DF, mit XYL Sabine, Frank DL7UFR, Leszek, SP3DOI, sowie mir als Neuling in dieser Truppe.

Termitenhügel im Okavango-Delta; Frank, DL7UFR

spätung. Das bescherte uns eine kostenlose nächtliche Stadtrundfahrt durch Madrid und ein sehr gutes Büffet in einem Madrider Hotel – alles auf Kosten der Iberia-Fluglinie.

Entsprechend kurz verlief die Nacht, doch der anschließende zehnstündige Flug nach Johannesburg bot genügend Zeit, um das Schlafdefizit auszugleichen. Die nächste Nacht verbrachten wir in Johannesburg, um am nächsten Morgen über Gaborone nach Maun weiterzufliegen. Auch hier ging es nicht ohne Verspätung ab, doch letztendlich erreichten wir mit allen Gepäckstücken am Dienstagabend Maun, das Ziel der Reise.

Unser Hotel, das "Sedia Riverside", befand sich etwa 5 km außerhalb von Maun. Ein Fahrer nebst Pick-Up erwartete uns bereits am Flughafen. Das Hotel lag nahe einem Fluss, und das Erste was uns erwartete, war ein ohrenbetäubender Lärm, hervorgerufen von scheinbar Tausenden von Fröschen. Das Spektakel begann

Amateurfunkpraxis

jeden Abend nach Einbruch der Dunkelheit und dauerte mehrere Stunden.

■ Stationsaufbau

Am Mittwochmorgen begannen wir sofort mit dem Aufbau der Stationen und Antennen. Als Shack stand uns ein komplettes Haus zur Verfügung. Platz zum Aufbau der Antennen war genügend vorhanden. Nach und nach entstanden ein Hex-Beam, ein Spiderbeam, ein Drahtbeam für 20 m sowie für die Bänder 160 m, 80 m, 40 m und 30 m jeweils gephaste Vertikals. Eine Beverage für 80 m vervollständigte die Antennenfarm. Auf der Suche nach einem geeigneten Mast für den Spiderbeam stießen wir auf eine Schiebeleiter aus Aluminium, wie man sie hier auf jedem Baumarkt bekommt. Wir borgten sie uns nur "kurz" vom Elektriker des Hotels, der sie uns dann aber für die nächsten zwei Wochen überließ.

Überhaupt verhielt sich das Hotelpersonal sehr freundlich und ließ uns praktisch freie Hand bei nale nicht allzu laut ausfielen. Auf 160 m verhielten die Signale durchweg an der Grasnabe. 140 Stationen fanden hier schließlich den Weg ins Log. Den Hauptanteil trugen 20 m und 17 m sowie 40 m und 30 m.

■ Ausflüge ins Umland

Ab und zu unternahm der eine oder andere von uns einen Ausflug nach Maun – mit 51 000 Einwohnern die fünftgrößte Stadt in Botswana. Klima und Vegetation werden hier von der

Im Haus (rechts) sind unsere Funkstationen untergebracht; davor stehen die Vertikalantennen für 80 m, links die für 40 m und in der Mitte der Spiderbeam mit einer Leiter als Mastersatz.

Sämtliche Stationen sind besetzt (v. l. n. r.): Andy, DL5CW, beim 12-m-CW-Betrieb; Frank, DL7UFR, widmet sich dem CW-Pile-Up auf 15 m, und Leszek, SP3DOI, funkt auf 10 m in SSB.

C-IS A DX BISS IN THE PARTY OF

all unseren Aktivitäten. Etwas zu schaffen machten uns die hohen Temperaturen. Ende September ist in Botswana noch Trockenzeit. Seit Februar hatte es nicht geregnet und es herrschten Temperaturen von bis zu 43 °C im Schatten – in der Sonne sogar bis zu 53 °C. Man konnte die schwarzen 18-m-Glasfiebermasten mit bloßen Händen kaum noch anfassen.

Als Stationen standen uns zwei K2 von Elecraft sowie je ein IC-735 und ein IC-7000 zur Verfügung. Der IC-7000 diente als Reservegerät sowie zur Übertragung des Online-Logs über Pactor nach Südafrika. Zusätzlich kamen zwei Eigenbau-FET-Endstufen sowie eine Eigenbau-Röhrenendstufe (TY900) zum Einsatz. Im Großen und Ganzen funktionierte die Technik problemlos. Es gab keinerlei Ausfälle, die wir nicht selbst reparieren konnten.

Angesichts des Sonnenfleckenminimums und auf Grund der Tatsache, dass wir uns mitten in Afrika befanden und daher von den positiven Effekten einer Abstrahlung über See nicht profitieren konnten, hatten wir unsere Erwartungen hinsichtlich der QSO-Zahlen schon heruntergeschraubt.

Immerhin lagen die Haupt-DX-Gebiete mindestens 8500 km entfernt (DL). Bis Japan oder zur Ostküste der USA sind es mehr als 13000 km. Trotzdem waren die Bedingungen auf den höherfrequenten Bändern besser als erwartet. An manchen Tagen lief es stundenweise sogar auf 10 m und 12 m recht flott, obwohl die Sig-

Kalahari (Wüste) geprägt. Maun ist wichtiger Handelsplatz und Ausgangsort für Exkursionen ins Okavango-Delta sowie dem Chobe-Nationalpark. Die Stadt besitzt keinen Stadtkern im eigentlichen Sinn, nur einige große Straßen sind asphaltiert. Das Stadtbild wird von Baracken und Hütten, oft in traditioneller Rundbauweise aus Lehm, geprägt. Für die Kleinbusse, die den öffentlichen Nahverkehr absichern, existiert kein Fahrplan. Man stellt sich an die Straße und wartet auf den nächsten Bus, der garantiert innerhalb von 10 min kommt. Der Fahrpreis fiel für unsere Verhältnisse mit 3 Pula (etwa 0,30 €) sehr moderat aus.

Da das Internet im Hotel viel zu langsam lief, haben wir die Logdaten mittels Pactor via ZSSS an Bernd, DF3CB, übermittelt.

Wir unternahmen zwei Ausflüge in das Delta. Bei einem konnten wir uns während eines etwa einstündigen Rundflugs mit einer Cessna ein Bild von der Größe und dem Artenreichtum dieses Gebietes machen. Aus der Luft sichteten wir Elefanten, Flusspferde und Giraffen sowie große Herden von Zebras, Gnus und Kaffernbüffel.

Zu einer Reise nach Botswana gehört unbedingt

auch ein Ausflug in das Okavango, das im Nordwesten gelegene Binnendelta des gleich-

namigen Flusses. Der Okavango fächert sich

hier auf und versickert im Kalaharibecken bzw.

verdunstet zu großen Teilen. Dabei bildet er in-

mitten der Kalahari-Wüste mit mehr als 20000

km² eines der größten und tierreichsten Feucht-

reservate Afrikas. Der Wasserstand im Delta er-

reicht seinen Höhepunkt erst zum Ende der Tro-

Ein zweiter Ausflug führte uns direkt in das Delta. In einem offenen Geländewagen ging es auf einer staubigen Piste vorbei an kleinen Dörfern mit ihren typischen Rundhütten. Nach einer Flussdurchquerung erwarteten uns drei einheimische Führer mit ihren Mokoros, die aus dem Stamm des Leberwurstbaumes hergestellten, typischen Einbäume des Deltas. Nach der Fahrt auf der riesigen, mit Papyrus bewachsenen Wasserfläche, erreichten wir eine Insel mit beeindruckenden Affenbrotbäumen, Leberwurstbäumen und mehrere Meter hohen Termitenhügel. Leider sahen wir an diesem Tag keine Elefanten aus der Nähe, wohl aber massenhaft Spuren in Form ihrer fußballgroßen Hinterlassenschaften.

Abbau und Rückkehr

Nach zwei Wochen neigte sich die DXpedition ihrem Ende zu. Am 6.10.08, um 0010 UTC, wurde das letzte QSO gefahren und unmittelbar darauf mit dem Abbau der Stationen begonnen. Noch in der Nacht begannen wir, die Antennen zu demontieren. Nach dem Frühstück ließ es sich die Chefin des Hotels "Madam Khumoyame Ledimo" nicht nehmen, uns persönlich zum Flughafen zu begleiten, um uns dort herzlich zu verabschieden.

Am 7.10.08 erreichten wir dann nach Zwischenstopps in Johannesburg und Madrid wohlbehalten Berlin. Nur eine Tasche von mir blieb in Johannesburg zurück. Mit zwei Tagen Verspätung fand auch sie schließlich ihren Weg in die Heimat.

Andreas Paulick, DL5CW

Antarktisprogramme im Internationalen Polarjahr

Die Polargebiete unseres Planeten haben eine besondere Bedeutung, denn das Schicksal der Polkappen hat eine direkte Auswirkung auf das Klima der Erde sowie auf unser Leben. Die Forschungen in den Regionen der Arktis und Antarktis erfordern sehr hohe Aufwendungen, sind jedoch unabdingbare Notwendigkeit.

Der internationale Antarktisvertrag (Antarctic Treaty System ATS) [1] ermöglicht die Erfüllung dieser Aufgaben. Seit seinem Inkrafttreten 1959 sind bis heute 46 Nationen dem Antarktisvertrag beigetreten, der den Eiskontinent unter den Schutz der Wissenschaft stellt. Alle Forschungstätigkeiten werden vom Wissenschaftlichen Komitee für Antarktisforschung (Scientific Commitee on Antarctic Research SCAR) [2] international koordiniert. Die führende Institution der Antarktisforschung der Bundesrepublik Deutschland ist das Alfred-Wegener-Institut für Polar- und Meeresforschung (AWI) mit Sitz in Bremerhaven [3].

Anlässlich des Internationalen Polarjahres (International Polar Year – IPY) vom 1.3.08 bis zum 1.3.09 [4], [5] bündeln Wissenschaftler aus 60 Nationen ihre Aktivitäten, um die Polargebiete zu beobachten. Die internationale Zusammenarbeit wird besonders in der Antarktis groß geschrieben. Viele IPY-Initiativen der Medien sowie von Künstlern und Lehrern, die sich mit dem Thema beschäftigen, sind dabei einbezogen und sollen die Begeisterung an der Schönheit der Arktis und Antarktis sowie die Faszination an der Polarforschung vermitteln.

■ Worldwide Antarctic Program (WAP)

Das weltweite Antarktisprogramm WAP [6] ist eine Amateurfunkinitiative, die 1979 von Gianni Varetto, I1HYW, und Massimo Balsamo, IK1GPG, ins Leben gerufen wurde. Sie erarbeiteten umfangreiche Dokumentationen (Antarctic Directories), in denen sämtliche aktiven und ehemaligen Antarktisforschungsstationen, alle bisher aktivierten Antarktisrufzeichen sowie alle dem Thema Antarktis gewidmeten Sonderrufzeichen mit WAP-Referenzen enthalten sind. Diese Listen sind nützliche Nachschlagewerke für Antarktis-Enthusiasten und bilden auch die Grundlage für sehr attraktive Antarktisdiplome wie WACA, WADA, IPY und ASEA.

Worked Antarctic Callsigns Award (WACA) Mindestens 10 unterschiedliche Antarktisrufzeichen von 3 verschiedenen Nationen, auch

WAP-WACA-Honour-Roll-Teller Foto: DL8JDX

Das Antarktis WAP-ASEA-Diplom

höhere Honour-Roll- und Top-Honour-Roll beantragbar. Diplomantrag an Massimo Balsamo, IK1GPG, Casella Postale 4, 12084 Mondovi (CN), ITALIEN.

Worked Antarctic Directory Award (WADA)

Mindestens 10 unterschiedliche Antarktisstationen von 3 verschiedenen Nationen, auch höhere Honour-Roll- und Top-Honour-Roll beantragbar. Diplomantrag (siehe WACA).

International Polar Year Award (IPY)

Mindestens 5 verschiedene Antarktissonderrufzeichen mit dem Suffix IPY, zusätzliche Sticker beantragbar. Diplomantrag an Nuccio Meoli, I0YKN, Via Conte Bassavilla 1, 03030 Rocca D'Arce (FR), ITALIEN.

Antarctic Special Event Station Award (ASEA)

Mindestens 5 verschiedene Antarktissonderrufzeichen (die meistens während der Antarktis-Aktivitätswochen AAW erreichbar sind). Diplomantrag (siehe IPY).

Weitere Initiativen innerhalb des WAP sind vor allem Medienaktivitäten sowie die Antarktis-Aktivitätswoche AAW [6], die jährlich im Februar stattfindet (16. bis 22.2.09). Besonders zur AAW sind viele Antarktisstationen aus diversen Ländern aktiv (zu erkennen an den Suffixen ANT, AAW, WAP oder IPY). Mit diesen sowie bestätigten Verbindungen mit Stationen aus der Antarktis können die oben erwähnten attraktiven Antarktisdiplome beantragt werden. Für Funkamateure, die "eigentlich schon alles haben (DXCC, IOTA usw.)", stellen solche Diplome eine neue Herausforderung dar. Die Zahl derer, die weltweit im Besitz dieser Awards sind, bewegt sich noch immer nur im zwei- bis dreistelligen Bereich.

Diese WAP-Tools sind für alle Funkamateure, Antarktisenthusiasten und -Interessenten gedacht. Sämtliche WAP-Initiativen sind den Aktivitäten der Forscher, Wissenschaftler, Organisationen, Institute, Regierungen und der vielen beteiligten Personen im Zusammenhang mit der wichtigen Antarktisforschung gewidmet.

Viele weitere Informationen, die Antarctic Directory-Listen, Diplomantragsformulare sowie auch die genauen Bedingungen zu den jeweiligen WADA- und WACA-Honour-Roll und -Top-Honour-Roll-Diplomen finden Sie unter [6].

■ DR09ANT: Sonderrufzeichen für die Antarktisforschung

DR09ANT gründet sich auf Initiativen des Distrikts Oberbayern im DARC e. V. und des lokalen Ortsverbands München-Ost (C11), des WAP (Worldwide Antarctic Program) und von Dr. Volker Strecke, DL8JDX. DR09ANT wird aus München und Umgebung noch bis zum 31. 12. 09 auf allen Kurzwellen- und UKW-Bändern aktiviert. Die Gelegenheit, DR09ANT (Sonder-DOK "IPY") zu erreichen, sollte während der AAW vom 16. bis 22. 2. 09 am größten sein. OSL-Manager ist DL5MHO.

OM Volker, DLSJDX, war selbst Mitglied bei drei Überwinterungen in der Antarktis. Die bei diesen Forschungsexpeditionen von ihm in seiner Freizeit verwendeten Rufzeichen lauten Y88POL (Georg-Forster-Station – 1988 bis 1989), Y88POL (Georg-Forster-Station – 1990 bis 1992) und DPOGVN (Neumayer-II-Station – 1992 bis 1994).

Während der derzeitigen antarktischen Sommersaison (November 2008 bis März 2009) läuft die Bauphase zur neuen Station Neumayer III, die nach einem völlig neuartigen Konzept entsteht [5]. Felix Riess, DL5XL, ist Mitglied der ersten Überwinterungsmannschaft auf Neumayer III und will, falls ihm seine dienstlichen Verpflichtungen die nötige Freizeit erlauben, voraussichtlich bis Anfang 2010 mit dem Rufzeichen DP1POL Funkbetrieb machen [8]. Er wird es damit etlichen Antarktisenthusiasten weltweit ermöglichen, interessante Kurzwellenverbindungen mit dem Südpolargebiet zu tätigen.

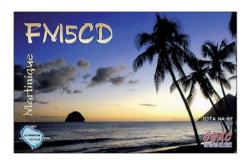
Ausführliche Informationen zur Antarktisforschung und zu Antarktisaktivitäten sind nachzulesen in [1] bis [6]. Hinweise auf deutsche Antarktisaktivitäten sowie auch auf eine Liste weiterer interessanter Artikel zum Thema Amateurfunkaktivitäten aus der Antarktis sind zu finden in [7]. Der Autor kann auch interessierten Organisationen einen attraktiven Vortrag mit faszinierenden Bildern aus der Antarktis und ausführlichen Informationen zum WAP anbieten.

Dr. Volker Strecke, DL8JDX (dl8jdx@darc.de) Literatur und URLs

- [1] Antarctic Treaty System: www.ats.aq
- [2] Scientific Committee on Antarctic Research: www. scar.org
- [3] Alfred-Wegener-Institut f
 ür Polar- und Meeresforschung: www.awi.de
- [4] International Polar Year: www.ipy.org
- [5] Internationales Polarjahr Der deutsche Beitrag: www.polarjahr.de
- [6] Worldwide Antarctic Program: www.waponline.it
- [7] Härtig, D., DL7RBI: 25 Jahre "CQ" aus der Antarktis, CQ-DL (78), 11/07, S. 768 ff.
- [8] Schlaffer, H., DL7MAE: DX-Mitteilungsblatt DX-MB 1598, 19. 11.08

DX-QTC

Bearbeiter:
Dipl.-Ing. Rolf Thieme, DL7VEE
Boschpoler Str. 25, 12683 Berlin
E-Mail: rolf@dl7vee.de
URL: www.dl7vee.de


Alle Frequenzen in kHz, alle Zeiten in UTC Berichtszeitraum: 4. 12. 08 bis 5. 1. 09

■ Conds

Weiterhin sehr schwache Ausbreitungsbedingungen bei einem durchschnittlichen Flux um 69. Oberhalb von 17 m war kaum etwas los. Die niederfrequenten Bänder zeigten sich ordentlich: An guten Tagen erreichte JA7NI an einem verkürzten Dipol für 160 m sogar echte 579! Der vergangene Sonnenfleckenzyklus 23 hatte ein flaches Doppelminimum im Oktober 2007 und Juli 2008. Immerhin soll es mit den Sonnenflecken des Zyklus 24 im neuen Jahr endlich bergauf gehen.

■ DXpeditionen

Etliche kleinere DXpeditionen waren unterwegs, doch wirkliche Freude kam bei den schwachen Ausbreitungsbedingungen nicht auf. – TG9/ IV3IYH war auf vielen Bändern in

CW, SSB und RTTY mit Interesse an Europa zu arbeiten. – I2DMI erfreute die RTTY-Gemeinde zum Jahresende als **A52RY**. Leider blieben die Conds sehr schlecht. Am besten ging es noch auf 40 m, während oberhalb von 20 m kein Signal hierzulande lesbar war. Die Fortsetzung seiner DXpedition in Nepal (9N) musste aus gesundheitlichen Gründen leider ausfallen.

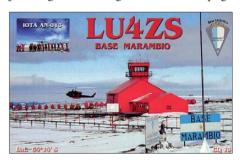
JA8BMK wurde nach T31DX unter T32YY ORV, aber leider erneut ohne spürbare Auswirkung auf Mitteleuropa. - FO/F8AAL konnte man morgens von Westeuropa auf 40 m in SSB erreichen. - Von Mt. Athos meldete sich zu den Feiertagen Mönch Apollo, SV2ASP/A, in SSB auf 20, 17 und 15 m. – VQ9JC (QSL via ND9M) ist bis Anfang April von Chagos ORV. Bis Jahresende konnte er das Sonderrufzeichen VQ98JC benutzen. - XU7ACY startete seine Aktivitäten auf den unteren Bändern mit guten Signalen auf 80 und 160 m. - S21RC zeigte sich oft auf 20 m in SSB. Mitte Januar sollte die verschobene Aktivität von AS-127 unter S21DX stattfinden. Die QSL gibt es direkt von EB7DX. Nach einem Jahr werden alle QSOs ins LOTW gestellt; ein Büro-QSL-Service ist nicht vorgesehen.

5N/LZ1QK ist häufig ab 40 m aufwärts in CW anzutreffen. Im neuen Jahr hofft er mit Endstufe und neuen Antennen für 160 bzw. 80 m

QRV zu sein. – **JD1BMM**, vom raren Minami Torishima, war über den Jahreswechsel wieder berufsbedingt als Wartungstechniker in seiner Freizeit QRV. Er bot ein gutes Signal, bleibt aber leider selten länger als 20 min auf einer Frequenz. Da er jeden Tag seine Zeiten und Frequenzen etwas variierte, kam es bei den kurzen Öffnungen zu einem ziemlichen Glücksspiel. In Mitteleuropa konnte er von 40 bis 17 m in CW, SSB, RTTY und PSK gearbeitet werden.

Rund um die Uhr machten JD1BMH und JD1BLY von Ogasawara Funkbetrieb. - Vater (ZF2VO, W2VO) und Sohn (ZF2NN, WO2N) konnte man auf 20 m in CW und RTTY gut von den Cayman-Inseln erreichen. OSL via Heimatrufzeichen. - Sechs Mitglieder der Universität von Cambridge wurden mit mehreren Stationen parallel als **ZD8UW** von Ascension ORV. Vor allem das 160-m-Signal überraschte positiv. OSL via LOTW oder G7VJR. - Die nicht ungefährliche Aktivität E44M wurde am 2.1.09 von der Westbank QRV. Sieben OPs, darunter IZ4AKS, SP3DOI und C31CT, funkten in CW, SSB und RTTY. Oberhalb von 15 m waren die Signale in Berlin nicht mehr lesbar. Obwohl viele Forschungsstationen in der Antarktis mit Funkamateuren besetzt sind, ist sehr wenig Aktivität zu verzeichnen. Am häufigsten wurden KC4AAA und VK0BP im Cluster gemeldet, nichts oder fast nichts gab es von FT5WO, ZS8T oder OP0LE zu hören.

■ Kurzinformationen


In Bangladesh (S2) bestanden 62 Probanden die Amateurfunkprüfung, sodass bald mit mehr Aktivität aus dieser Region zu rechnen ist. – Das Antarktis-Netz von LU4DXU läuft an Wochenenden ab 1830 UTC auf 14290 bzw. 14315 kHz, später auf 7093 kHz. – Janusz, SP9YI, ist bis November 2009 von King George Island (South Shetland) unter HF0APAS in der Luft. – Mithilfe von 5X1NH hat 5X1GS seine Antennen repariert und für die niederfrequenten Bänder erweitert. Er konnte schon auf 80 m in SSB und auf 30 m in CW gearbeitet werden. QSL über WB2YQH.

EL2DX ist K8SJP – er arbeitet als Botschaftsangehöriger in Liberia. Stationsmäßig benutzt er einfache Antennen mit einer kleinen Endstufe. Die QSL geht direkt an sein US-Call. – Ghis, ON5NT, ist jetzt Rentner und will mit seiner Frau viel reisen. Als erstes Ziel plant er vom 31.1. bis 7.2.09 als VP8DLQ oder OR3AX Falkland zu aktivieren, allerdings nur mit kleiner Stationsausrüstung.

Der "Verwalter" von QSL.net und QTH.net, K3TKJ, geht nach 13 Jahren uneigennütziger Serverpflege in den Ruhestand, KA9FOX will das Projekt weiterführen und bittet um Unterstützung. - Soundfiles von DXpeditionen veröffentlicht K8CX auf http://hamgallery.com/ dx2008/. - Während Contester und "harte DXer" sowie DXpeditionen weiter bei den digitalen Sendearten auf RTTY schwören, nimmt besonders unter den Gelegenheitsfunkern die Nutzung von PSK stark zu. Im Pile-Up sollte man aber unbedingt vermeiden, den Namen oder gar die Stationsbeschreibung durchzugeben, auch wenn es per Funktionstaste am PC einfach realisierbar ist. - PB2T, Präsident der EUDXF, ließ verlauten, dass 2010 die holländischen Überseegebiete in der Karibik neu strukturiert werden. So könnten **PJ2** und **PJ7** als DXCCs gestrichen werden und dafür eventuell vier neue DXCC-Gebiete "entstehen".

■ Vorschau

Eine Top-Aktivität von Desecheo-Island (**KP5**) steht vom 12. bis 26.2.09 ins Haus. Nach jahrelangen Bemühungen hat eine 15-köpfige

Gruppe unter NA5U mit K4UEE und W0GJ die Genehmigung erhalten. Es sollen mit sechs Stationen alle Bänder von 160 bis 6 m sowie die wichtigsten Sendearten abgedeckt werden. Asien und Europa, wo KP5 an vorderer Stelle in den Most-Wanted-Listen steht, will man bevorzugt berücksichtigen.

Ein ungarisches Team mit HA9RE, HA0NAR und HA9SDA (YL) will vom 28. 1.09 für drei Wochen als **FW5RE** und dabei mit speziellen Lowband-Ambitionen QRV sein. QSL nur direkt via HA8IB. – Sieben OPs aus Chile und Frankreich werden vom 28. 1. bis 5. 2.09 von SA-070 als **XR5L** in CW und SSB funken. QSL über CE6AMN. – Sigi, DL7DF, kündigt eine Urlaubsaktivität als **5H1DF** aus Tansania an. Vom 3. bis 12. 2.09 wird mit K2, Endstufe

E	Bandmel	dung	en im	Berichtsz	eitrau	ım
1	160 m			JD1BMM	10105	0740
6	SW1SE	1829	2130	OX3YY	10105	1000
٦	ΓF/LX1NO	1817	2210	P43JB	10106	2200
>	KU7ACY	1823	2145	TR8CA	10142	1630
8	30 m			XU7XRO	10107	1410
4	IS7NE	3505	0055	XW1B	10110	1240
	X1GS	3780	2000	20 m		
8	3Q7DV	3502	2000	4A1DXXE	14086	1330
E	EK6TA	3792	1745	A52RY	14092	0830
	J39BS	3521	2345	A71CV	14088	1310
1	/Q9LA	3528	0020	EP3PK	14194	0930
)	(U7ACY	3503	1930	ET3JA	14193	0730
4	10 m			FK8DD	14033	0900
5	Z4/RW1AU	7004	1730	H44MY	14042	0800
8	3J1RL	7005	0030	H6VA	14004	1345
1 -	A52RY	7042	1515	JD1BMH	14081	1100
	C91LW	7002	2030	KC4AAA	14243	1945
	O/F8AAL	7081	0815	TG9/IV3IYH	14208	1430
1 -	H6VA	7011	0600	V51AS	14199	0800
1 -	HR9/WQ7R	7008	0600	ZD7FT	14204	0730
	J79WE P29ZAD	7010 7075	0220 2145	ZF2NN	14016	1310
1 -	R1ANR	7075	0020	17 m		
	S79UH	7008	2140	4U1UN	18074	1800
	Γ47C	7050	2310	6W2SC	18105	1530
	IT8JT	7005	2010	BA8AG	18093	0900
	IT8SK	7092	1820	JD1BMM	18101	0845
>	KE1KK	7077	0530	KH2JU	18127	0845
3	30 m			TG9/IV3IYH	18070	1340
	1U1UN	10108	1830	SU9HP	18092	0900
	R8IC	10103	1710	VR2XMT	18135	0830
	X1GS	10108	0555	Z29KM	18074	0820
	DP0GVN	10143	2100	15 m		
E	EL2DX	10105	0845	E44M	21090	0900
	H6VA	10110	2230	J5UAP	21210	1300
H	HI8PJP	10141	2145	ZD8UW	21011	1110

und Vertikalantennen gefunkt. - G4IUF beabsichtigt, von Ende Januar bis zum 10. 2. 09 von der PJ4G-Conteststation als PJ4/G4IUF besonders auf den WARC-Bändern in der Luft zu sein. - Unter /VP5 wollen KX7YT und N1KEZ vom 12. bis 15.2.09 funken. - N7OU und W7YAQ beabsichtigen vom 11. bis 16. 2. 09 als 3D2OU und 3D2NB von Fidschi hauptsächlich CW-Funkbetrieb zu machen. Danach geht es bis zum 2.3.09 nach Tuvalu (T2). - Von EU-175, einer selten aktivierten Azoreninsel, will CU5T vom 28. 1. bis 2. 2. 09 mit dem Team von CU8W auf allen Bändern QRV sein. QSL an CT1GFK. - K2LE ist als P40LE vom 28.1. bis 28.2.09 unterwegs, OH2BAD als P40MH vom 1. bis 17. 2. 09.

Vom 22. 2. bis 6. 3. 09 plant Jan, DL7JAN, aus Anlass seiner 10-jährigen Amateurfunklizenz eine Funkexpedition als **S79JF** von der Insel Praslin (AF-024) von den Seychellen. Er versucht von 40 m aufwärts in CW, SSB, RTTY und PSK zu arbeiten. QSL direkt oder via Büro. – G4OHX kündigt als **V8FHX** Funkbetrieb vom 11. bis 28. 2. 09 an.

Bert, CX3AN, will vom 14. bis 21.2.09 Urlaub mit seiner Familie auf Tonga machen. Als A35HA versucht er besonders auf 30 und 17 m Betrieb zu machen. – Um die großen Conteste im Februar (CQ WPX RTTY am 14./15.2. und ARRL DX CW am 21./22.2.09) sind viele Karibik-DXCC-Gebiete aktiv – man kann gut nach Bandpunkten Ausschau halten.

Nicht anerkannte QSLs für das DXCC-Diplom

Das DXCC-Diplom der ARRL ist die Grundlage für das Sammeln von DXCC-Gebieten durch Tausende von DXern weltweit. Es gibt zurzeit 338 aktuelle Gebiete. Einige sind einfach zu erreichen, für andere benötigt man Jahre. Dies gilt besonders für weit entfernte und/oder selten aktivierte Gebiete oder solche, in denen Amateurfunk jahrelang verboten war. Einige dieser besonders seltenen OSLs sind von der ARRL nicht für das DXCC-Diplom anerkannt. Hauptgründe sind fehlende Nachweise der Lizenz, des Aufenthaltes oder sonstiger Genehmigungen in Papierform. Dazu kommen noch DXpeditionen in betrügerischer Absicht. Zu letzterer Kategorie zählt z.B. P5RS7 (angeblich aus Nordkorea).

Aus aktuellem Anlass (Länderstand und Most Wanted Listen) sollten neben der Akzeptanz der DXCC-Liste der ARRL auch die Festlegungen bezüglich Anerkennung von DXpeditionen befolgt werden. Ich selbst bin auch enttäuscht, dass mir trotz vorliegender (aber nicht anerkannter) QSL-Karte von 701YGF der Jemen weiterhin in CW und RTTY fehlt, doch ich akzeptiere es.

IOTA-QTC

Bearbeiter:

Dipl.-Ing. (FH) Mario Borstel, DL5ME PSF 113527, 39034 Magdeburg E-Mail: dl5me@darc.de

■ Inselaktivitäten

Afrika: Jan, DL7JAN, beabsichtigt vom 22. 2. bis 6. 3. 09 als S79JF von Praslin, AF-024, QRV zu sein (siehe auch DX-QTC). – Phil, G3SWH, und Richard, G3RWL, wollen vom 26. 2. bis 5. 3.09 von Mayotte, AF-027 (LH-0376), mit vorangestelltem FH-Präfix hauptsächlich in CW arbeiten – vorgesehen ist Parallelbetrieb von zwei Stationen. QSL direkt via G3SWH. Weitere Informationen unter www.g3swh.org. uk/mayotte.

Sigi, DL7DF, plant vom 3. bis 13.2.09 als 5H1DF in allen Betriebsarten und auf allen Bändern von Sansibar, AF-032 (LH-1080), im Urlaubsstil zu funken. – Eric, F6ICX, machte für einige Tage von Sainte Marie, AF-090, Funkbetrieb.

Asien: Das Team von AT2RS aktivierte im Dezember an mehreren Tagen die "new one"-Insel Nachugunta, AS-199. Die DXpedition konnte 2811 Verbindungen loggen. – Wim, ON7PP, meldete sich bis Mitte Dezember unter XU7KOH von AS-133. – Die DXpedition von S21DX nach St. Martins, AS-127, wurde erneut verschoben.

Antarktis: Mehdi, F5PFP, stellte ein mehrköpfiges Team zusammen und beabsichtigt, von Mitte Februar bis Mitte März die Aktivierung von Süd-Shetland, AN-010, und West Graham Land, AN-012. Das Team plant in Abhängigkeit der Wetterbedingungen von elf Antarktisbasen Station zu machen. Das Rufzeichen wird FT5YJ sein. Mehr Informationen unter www. french-polar-team.fr/Antarcticexpedition 2009/Antarcticexpedition2009.html.

Nordamerika: John, KX7YT, und Rob, N1KEZ, aktivieren vom 12. bis 15. 2.09 erneut unter VP5JM die Inselgruppe der Providenciales, NA-002. QSL via Heimatrufzeichen. – Dennis, WA2USA, will vom 12. bis 24. 2.09 als WA2USA/4 von Bogue Banks, NA-112, aktiv sein. – Die Vorzeichen für NA-095 (K5D) vom 12. bis 26. 2.09 stehen nach wie vor auf Grün. – Bodo, DL3OCH, aktivierte unter dem Rufzeichen KT3Q/4 NA-062 und NA-141. – Als T47C war ein kubanisches Team von NA-086 QRV. QSL via W3HNK.

Ozeanien: Bill, N7OU, und Bob, W7YAQ, wollen vom 11. bis 16. 2.09 als 3D2OU und 3D2NB von Levu, **OC-016** (LH-0055), vorrangig in CW Betrieb machen. Anschließend wollen sich die beiden OPs vom 17. 2. bis 2. 3.09 von Tuvalu, **OC-015**, melden.

Eine Gruppe ungarischer OPs hat sich vorgenommen, den gesamten Februar hindurch als FW5RE von Wallis, OC-054, Funkbetrieb durchzuführen. QSLs via HA9RE. – Mike, H44MY, und seine XYL Jan, H44MO, arbeiteten mehrere Tage von Ontong Java, OC-192. Anschließend aktivierte Mike noch für geraume Zeit Ghizo, OC-149, unter dem gleichen Rufzeichen. Momentan segelt er nordwärts; es bleibt abzuwarten, ob das nächste Ziel Mikronesien (V6) sein wird.

Südamerika: Ghis, ON5NT, will vom 31.1. bis 7.2.09 von den Falkland-Inseln, SA-002, hauptsächlich auf 40 und 30 m in CW (Urlaubsstil-Aktivität) QRV sein. QSL-Karten gehen über sein Heimatrufzeichen. – QSL-Karten für die kürzlich stattgefundene DXpedition nach SA-075 (OA4BHY/2) sind zum Versand gekommen. – YW1TI ist wie angekündigt Mitte Dezember von Toas, SA-066, QRV geworden. OSL via IT9DAA.

■ IOTA-Informationen

Am 1.2.09 ist Stichtag für die IOTA Honor-Roll. Ein Abrechnung ist online beim IOTA-Hauptquartier möglich (www.rsgbiota.org/). QSL-Karten müssen jedoch nach wie vor zur Kontrolle dem IOTA-Checkpoint (für DL ist das Hans-Georg, DK1RV) vorgelegt werden.

Weiterhin besteht die Möglichkeit, Verbindungen, die im IOTA-Contest getätigt worden sind und für die Logs vorliegen, zur Wertung zu bringen, ohne QSLs vorlegen zu müssen. Eine Abrechung per Papierantrag ist ebenfalls möglich.

■ IOTA-Anerkennungen

Der IOTA-Manager Roger, G3KMA, gab bekannt, dass folgende IOTA-DXpeditionen anerkannt wurden: AS-199 (AT2RS), NA-064 (K6UMO/KL7), NA-070 (K6UMO/KL7), OC-163 (H40MY), OC-192 (H44MY, H44TO) und SA-075 (OA4BHY/2).

Weitere Aktivitäten werden bis zur Vorlage der Unterlagen bisher nicht anerkannt (Stichtag 20.12.08): AF-037 (9L0W) sowie AS-171 (4S7DXG/p, 4S7LGT).

QSL-Telegramm THE QSL ROUTES MONTHLY SHEET 2.09 DL9WVM-DL5KZA-SM5CAK-SM5DQC @ QSL-ROUTES BERLIN

DL9WVM·DL5KZA	SM5CAK-SM	5DQC © QSL-ROUT	ES BERLIN
DX-Call	Manager	DX-Call	Manager
3B8/F8DHM	F8DHM	C6AMP	DL2NCY
3B8JB	SM6JBC	C6ARA	N1RA
3D2HC	DL9HCU	CE1/K7CA	NW7O
3V8/HB9TQF	HB9TQF	CE3P	CE3PG
3W9HRN 3Z0HNY	DL1HRN SP2FAP	CE5N CE9/K2ARB	CE5WQO K2ARB
3Z0PGA	SQ9NFD	CF3RJ	VA3RJ
3Z0WPX	SP5ZCC	CH1GXG	VOIGXG
3Z1PGA	SQ9NFD	CM6RCR	W3HNK*
3Z83NKP	SP2FAP	CN2CV	HB9CVC EA7FTR
4A1DXXE 4K6CD	N7RO DK6CW*	CN2DX CN89NY	EA/FIR EA7FTR
4L1FP	LZ1OT	CN8IG	EA7FTR
4L3Y	DK6CW*	CN8KD	EA5XX
4L6DL	LZ1OT	CN8PA	EA7FTR
4L6QC	LZ1OT	CN8SG	EA7FTR
4L8A (>4/08)	K1BV	COOV	EA1EAU
4Z8AY 5K4DX	F5LGE HK4LRM	CO7RR CQ3500KY	KU9C CT3KY
5R8FL	G3SWH	CQ3500K1 CQ7EPC	CT1BWU
5R8GZ	G3SWH	CS95BD	CT3BD
5V7BR	F2VX	CT/DH7LK	DH7LK*
5W0UK	SM6CUK	CT1/LA9HC	LA9HC
5X1GS	WB2YQH*	CT1HTU/p	F8ATS
6W/F1TZG 7P8AA (12/08)	F1TZG ZS6AW	CT3/DL3DXX CT3AS CT7FFE	DL3DXX DJ8FW
7S3F	SM3AF	CT7FFF	CTIIUA
8J1AKM	7L2KOZ	CT7FFG	CT1GFK
8J1RL (12/08)	JA2IJV	CT7FFM	CT1IUA
8P9TP	G4YBU	CT7FFT	CT1GFK
9A/DK6XZ	DK6XZ	CX1UI CX5TD	EA5KB
9H3ME 9H3RO	OH2ME G3ROO	CX5TR	EA5KB K1BV
9J2FM	JA4ATV	D22CW (PIRATE) D78CHF	DS0PN
9M1P	DF5UG	DA0FX	DL4NH
9M2TI	EA4ATI	DQ7Y	DL4NY
9M4SAB	9M6TW	DR0X	DL2SD
9M4SJB	9W2JOH DF5UG	DS72CHF	DS0PN DC4NMI
9M6QQ 9M6S	9M6TW	DS73CHF DS74CHF	DS4NMJ DS4NMJ
9M8QQ	DF5UG	DU7/PA0HIP	PA0HIP
9Q1TB	SM5DJZ	E51CUK	
A52RY	I2DMI	E51KAJ	SM6CUK JA1KAJ
A61AS	YO3FRI	EA1/EH3CT	EA3KG
A61NA	UA6MF DJ2MX	EA6IB EA7Z	EA5BM EA7HZ
A61RJ A62ER	IZ8CLM	EA/Z EA8/DK5LM	DK5LM
A62ND	IZ8CLM	EA8/DL3KVR	DL3KVR
A71CO	EA7FTR	EA8/DL7AU	DL7AU
A71CT	EA7FTR	EA8/DL8JJ	DL8JJ
A92BND	A92GR	EA8/HB9AMA	HB9AMA
AM1LE AM3AHT	EA4URE EA3AHT	EA8/HB9ZY EA8/LA8WF	HB9ZY LA8WF
AM4DQX	EA4DQX	EA8/LA9DL	LA9DL
AM7CE	EA7URM	EA8/OE7WGT	OE7WGT
AM7HQ	EA7HQ	EA8/PD1DX	PD1DX
AM7HZ	EA7HZ	EA9/DF7EF	DF7EF
AM7Z AM9IB	EA7HZ	ED3TCT (08)	EA3GHZ
AN7HZ	EA9IB EA7HZ	ED6URB ED7HZ	EA6ZX EA7HZ
AN7Z	EA7HZ	ED7IZ ED7Z	EA7HZ
AO3GHZ	EA3GHZ	EE7E	EC7ABV
AO5GAN	EA5GAN	EE7Z	EA7HZ
AO7HZ	EA7HZ	EF7AGH	EC7AGH
AO7Z AY8A	EA7HZ LU8ADX	EF7Z EG3CTV	EA7HZ EA3RKR
BD3BXH/2	BD3BXH	EG5C1V EG7HZ	EA7HZ
BG3DCI/2	BD3BXH	EG7IZ EG7Z	EA7HZ
BG3DDB/2	BD3BXH	EG8AAD	EA8AAD
BV0HQ (IARU08)	BM2JCC	EG8ADM	EA8ADM
BW0TPE	BX2AN	EG8AJM	EA8AJM
BY1CW BY5CD	BG1WYL BG5CHII	EG8AJO EG8BIE	EA8AJO EA8BIE
BY5CD C4Z	BG5CHU G3SWH	EG8BUE	EA8BUE
C56KR	OZ8KR	EG8CEI	EA8CEI

STE	IPEI	GEF	ÄLLIG?
Ø 22 CINIT	Y GROUN	Ø 15 # 9999	Ø 10 Q.S.(DL7UFR
(L2		RTC 12	TO-
* #99	RAPHT		2010 °
Automatiks Logo und M		costs c	printer R 24
AGCW-DL*, I DL-QRP-AG QSL VERIFIE *) mit Mitalieds	DIG*, RTC*, , GDXF*, :D BY CALL		
FUNKAMAT Berliner Str	ΓEUR-Lese: : 69 · 13189	Berlin · Fax	(030) 44 66 94 69 estellungen sinnvoll!

DX-Call	Manager
EG8CEQ	EA8CEQ
EG8CFY	EA8CFY
EG8CFY	EA8CFY
EG8EY	EA8EY
EG8HB	EA8HB
EG8HJ	EA8HJ
EG8IK	EA8IK
EG8JA	EA8JA
EG8VD	EA8VD
EI/ON5GS/p	ON5GS*
EI/W5GN	W5GN
EI6JY	DL8RDL
EJ6DX	EI6DX
EK3GM	IK2QPR
EK6LP	IK2DUW
EN60G	UT7GX
EO15IVK	UT5IH
EP3PK	IK2DUW
ER5WU	W3HNK*
ES4/M0EDX	M0EDX
FG/DL8WEM	DL8WEM
FM5BH	W3HNK*
FM5FJ	KU9C
FM5WE	K4FJ
FO/F8AAL	F8AAL
GB0BSG	MW0CNA
GB0CR	G1KLP
GB0GPF	MI0XLK
GB0WPH	M0ALA
GB2HLB	GM3WUX
GB2HWP	M1TES
GB5ONG	MW6VHF
GS3BSQ	GM4BKV
GX3BSA	G4MWC
GX4MWC	G4MWC
H6VA	TI4SU*
HA80MRASZ	HA1DAE
HB0/HB9LCW	HB9LCW
HB2008RR	HB9RR
HC2AQ	EA5KB
HE8DSF	HB9DSF
HE8DSY	HB9DSY
HF0APAS	SP9YI
HF1PGA	SQ9NFD
HF30JAB	SP2QVP
HF55KEH	SP5KEH
HF75LD	SP7PGK
HF7MME	SP3SLD
HF9HNY	SP9BRP
HG100WTE	HA5AEZ
HG1848I	HA3HK*
HG3IPA	HA3JB
HG550REX	HA5RY
HG80MRASZ	HA1DAE
HI3/IK4QJF	IK4QJF
HI3A	ON4IQ
HI3TEJ	ON4IQ
HK4OBA	EA5KB
HK4SAN	EA5KB
HL9BSA	W8XC
HP1/LA5IIA	LA4YW
HP3DX	W4WX
HP3TA	KG6UH*
HP3XUG (NOW)	HP3TA* W9GL
HQ2GL HR2/W9GL	W9GL
HR9/IK2QPR	IK2QPR
HR9/WQ7R	AI4U
HZ1EA	K4VUD DJ9ZB
HZ1PS	IZ8CLM
II2IGTO	IQ2MI
IK7JWX/p	IK7JWX
IO3V	IK2CFR
IO5O IR3C	IQ2MI IK7JWX IK2CFR IK5RLP IV3RVN
IU8SRE	IK8WEJ
IY1GM	IK1UGX
J43J	DJ5JH SV7CUD
J47DKT J6/W0SA J68HZ	8P9NX* K9HZ
J79WE	DL8WEM
JD1/JK1PCN	JK1PCN
JD1BLY	JI5RPT
JD1BMH	JG7PSJ
JI3DST/JS6	JI3DST
JS6RRR/JS6 JW1CCA	JS6RRR LA1CCA K3IRV
JY4NE K0W (10/08)	WD4KOW
K1W (10/08) K2A (10/08)	K1LGC K2GQ KC2JEM
K2K (10/08) K2S (10/08) K3A (10/08) K3C (10/08) K3C (12/07) K3G (10/08) K3N (12/08 1/00)	K3UAL
K3C (10/08)	KB3LXI
K3C (12/07)	N3YIM
K3G (10/08)	W3DI
K3N (12/08-1/09)	N3YIM
K3P(10/08)	ND3E KB3NUQ
K3R (10/08) K4C (10/08) K4C (10/08) K4NWR (10/08) K4W (10/08)	N8ESI K4RT
K4W (10/08)	AF4DN
K4Z (10/08)	N4TZH
K4Z (10/08) K5K (10/08) K7A (10/08)	KE5NRF K7CGA
K7A (10/08) K8F (11/08) K9Z (10/08)	W8VS K9ZPU
K9Z (10/08) KB0TTL (10/08) KC2HOU (10/08)	KA0UMJ K2JXW

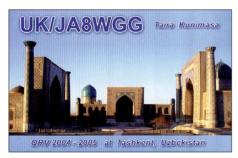
DV C-II	
DX-Call	Manager
KC4/K2ARB KC5OUR	K2ARB N5PR
KC5OUR KC7JEF/mm KE5AAO/mm	UA6GG K5YAA
KH0AM	JE1CKA
KH2/JE1WYC KH2/KZ6C	JE1WYC JA1CGH
KH2/W8XGI	JA1XGI EA3GHZ
KH6/EA3GHZ KH6/OE6MBG	OE6MBG
KH6BB KH6BK	K1ER* JA1BK
KP2/NY6X	NY6X WA2TTI
KP2/WA2TTI KP3XX	KP3S
KP4AO (23/11/08) KS0JC	W3HNK N0ZIZ
KT3Q/4	DL3OCH
LO7D (ARRL10m08) LQ0F (ARRL10m08)	LW1DRH EA5KB
LO5H (ARRI 10m08)	EA5KB LU2FA
LR2F (ARRL10m08) LR4E (ARRL10m08) LS1D (ARRL10m08)	LW4EU
LIUH (AKKLIUIIIU8)	LW9EOC EA7FTR
LW3EWZ LX/DL1AXC	EA5KB DL1AXC
LX8RTTY	LX1DA
LX9DX LY/K9ZO LY10DR	LX2A K9ZO
LY10DR LY1DR (NOW)	LY5W LY5W LY5W
LY2BIM	LY5W
LY600W LY61DR	LY5W LY5W
LY70W LY755W	LY5W LY5W
LY75DR	LY5W LY5W
LY91DR LY95DR	LY5W LY5W
LY98DR LZ5F (08)	LY5W LZ1ZF
LZ9M	LZ3GM
M0YCM/6Y5 M2X	K1YCM M3ZYZ
M5A MM0NDX/p	G3TXF MM0NDX
MM0XAU	DJ6AU
MX0X N0W (12/08)	M3ZYZ WA4HND
N1C (10/08)	N1BPO NP2DJ
N2A (10/08) N2B (7/08) N2B (6/08)	K0BAD*
N2B (6/08) N2OB/150	NU2W N2OB
N3G (10/08) N4J (10/08)	N3CJM W4HMK
NIAD (10/00)	ND9M
N4V (10/08) N4V (10/08) N4Y (10/08) N4Z (10/08)	KD4OOM N4ECW
N4Z (10/08) N5A (10/08)	AF4VK W8KSW
N7A (10/08)	AB7FJ
N7Z (10/08) N8A (10/08)	KG4FXV K8QN
N8F (11/08) NY2/NP3D	W8VS W3HNK*
OA4/DL1NL OA4/DL5YWM	DL1NL DL5YWM
OD5ET	EB7DX*
OD5NJ OD5SK	I1HJT IZ8CLM
OE2008MOU	OE1MOU
OH0/IK3GES OH1NAYV	IK3GES OH1AJ
OH4JT/1 OH6DO (NOW)	OH4MFA N5ZO
OK8RB OL1WW	EA3GHZ OK1DXW
OL7C	OK1KVK
ON/EA5GVJ ON1000NOTGER	ON6LP ON5VL
ON1708M ON175BR	ON5TN ON7BR
ON25PRA	ON6ZJ
ON40BAF ON84WMM	ON6KN ON7SA
OO4JZ OO7K	ON4JZ ON7RK
OP0LE	ON3PC
OP4A OP5N	ON6LY ON5NT
OQ5M OR4JZ	ON5ZO ON4JZ
OR7A OT5P	ON7CK
OX3YY	ON7RN OZ7YY
OZ/DF8XC OZ/DJ0DX	DF8XC DJ0DX
P29SS	NI5DX
P40CG P40K	W2CG WM6A
P40TA P49V	WM6A AI6V
PA/OK2QA PA125CWZ	AI6V OK2QA PD9HVS
PA30KST	PE9DX
PB25DIG PD05SRT	PD5CW PD5CW
PG6G (PACC08) PJ2/N5ZO	PA3GVI N5ZO
13411JLU	NULU

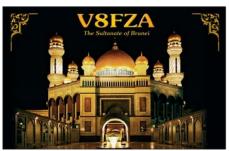
OX-Call	Manager
PJ2/PB2T PJ2Y	PB2T G3SWH
PJ4/K7LNR PJ4/WO0Z	K7LNR
PJ7/K2GSJ	WO0Z K2GSJ*
PJ7/WA1S PY2ZZO	WA1S N5ZO
RIANR	RZ3BJ
R70B RI1OTA	RA9UT UA9XC
RO6F RP3APR (08)	RZ6HWA RA3ATX
RP4HIL	RD4HD
RP67MB RP9XS	RZ3FR RW9XF
RS245GS	RL3AB
RT3T RT4D	UA3TT RZ4CWW
RT4M RT6A (RDXC08)	RN4LP RZ6AZZ
RW0A	RA0ALM
S21RC SA7OT	EB7DX* SM7BHM
SC0XMAS SD0MN	SM0OGQ DL4MN
SE2T	SM2YIZ
SF700BF SM7/DK3PZ	SK6NL DK3PZ
SN0PGA SN0SWPW	SQ9NFD
SN0TPG	SQ5AXS SP8ZKX
SN1PGA SN2I	SQ9NFD SP2EWQ
SN2K	SP2YWL
SN2S SN3PAT	SP2KRS SP5PPK
SN3R (08) SN3T	SP6HEQ SP3SLU
SN3X	SP3SLA
SN5G SN5N	SP5KCR SP5KP
SN5R	SP5XMU SP9KAJ
SN700P SN7Q	SP7GIQ
SN8F SN90ETN	SP8FHK SQ2ETN
SN90FCR	SP2FCR
SN90J SN90JPV	SP3J SQ3JPV
SN90JVW SN9ERC	SP2JVW SP5POT
SN9U	SP9UMJ
SO9C SQ0PGA	SQ9CNN SQ9NFD
SQ2RDX SQ6W	SP5BLI SP6ZKO
SU9HP (12/08)	DJ2BC
SV5/HB9XCL SV8/DL3ZAL	HB9XCL DL3ZAL
SV8/DL8MCA SV9/AI4YE	DL8MCA I0UZF
SX2EPC	SV2HRS
SX5R F31/T32XG	SV5DKL JA1XGI
F31/F32XG F32YY	JA8BMK
Г47С Г80W	JM1LJS
Г88СР Г88НК	JA6UBY* JE6DND
T88HS	JA6KYU* JA6EGL*
Γ88SM ΓΑ4ZA (08)	OH2BH
TC1KLH TC1LZ TC2SLH	TA1HZ TA1HZ
C2SLH	TA1HZ
CC6HQ (IARU08) CC7A CC90CNK	TA2IK/6 TA7KA
COOCI D	TA1FR TA1FR
TC91GP	TA2KK
TF/LX1NO TF/PD9DX	LX1NO PD9DX
ΓF3ZA ΓG4E	KT6YL* TG9ANF
rG7M	EA1APV
TI2TL TI3/WA7UZO	IN3DEI AI4U
FIT/KC2MXH FM2OFL	TI5JOS F5KFL
ΓM4AFM	F6KIM
ΓM4IPY ΓM4TLT	F8DVD F8KOI
ΓM6TNB ΓM7XX	F6TNB F5MUX
TM8T	F6BDM
ΓR50R ΓR8CA	F6AJA F6CBC
ΓR8CR	F6AJA
TS7C TT8CF	F4EGD F4BQO*
ΓT8SK ΓU/F4EGS	F5OZF F4EGS
ΓY5ZR	IK2IQD
JA0LKM/mm JA6GO/mm	RK0SP UA6HPR
JE1RFF/1 JE3GMF/p	UA1RJ RA3GJ
IF6IPY	UA6HPR
JE6IPY/6 JE9GDA JK/DL9LBH	UA6GG RA9FDR
JK/DL9LBH	DL9LBH

er	DX-Call	Manager
Н	UK8OAH	IK2QPR DF6PB
n }	UN1F UN7AB	DL8KAC
*	UN7CC UN7L	KI6Y RW6HS*
	UN9LEL UP2BIM	LZ1YE LY5W
Γ	UU0A V44KJ	UU0JX WB2TSL
2	V55SRT	IZ8EDJ
VA TX O	VE/DL2JRM VK4/JK1FNL	DL2JRM JK1FNL
)	VK6JB VK7GK	M0URX DL8NU
F 3	VP8DKF VQ98JC	K2ARB ND9M
Γ	VQ9JC	ND9M
VW	W0W (10/08) W1D (10/08)	W0ALX WA4DDH
Z LM	W1P (11/08) W1SRT (10/08)	K1WCC W3IZ
(* ∃M	W1W (10/08) W2/PY2AAZ	W8ZY PY2VM
GQ N	W4/VA3RA W4B (10/08)	VE3IKV* KF4OUI
Ż	W4BLA (10/08)	KI4SYK
Ź	W4C (10/08) W4D (10/08)	KB2NNC AB4EG
D KS	W4H (10/08) W4J (10/08)	N4JTQ NQ4U
X D	W4T (10/08) W4Y (10/08)	NA9Y K4JJS
/Q	W5A (10/08) W5B (10/08)	W5TUU
VL S	W5I (10/08)	NM5HD K5YM
K Q	W5M (12/08) W6A (10/08)	K5DLO W6STI
Ú A	W8F (11/08) W8OWS (10-11/08)	K8UNS K3QC
R	W8V (10/08)	N8VGC K8NET
1 U	W8W (10-11/08) WP3R	W3HNK*
J J	XE3/DL8MTG XF1/XE1KK	DL8MTG XE1KK
Ř N	XR5N XR6V (ARRL10m08)	CE5WQO CE6AMN
R	XU7ACY	W2EN ON7PP*
V	XU7KOH XU7TAS	ON7PP
W T	XU7XRO YB0KTQ (NOLONGER)	
IJ N	YB3MM/9 YC0KTQ (NOLONGER)	IZ8CCW KO6IS
D I	YE2S YJ0MM	YC2DDT DL4RDJ
0	YL90CF YL90MF	YL2CF YL2MF
ÇL.	YL90TB	YL2TB
AL CA	YM1DX YM5VH	TA1DX TA2RJ
RS	YM7M YM7VE	TA7T TA2RJ
IL I	YM90CNK YM90GLB	TA1FR TA1FR
IK K*	YM9VN YM9VS	TA2RJ
S	YN4SU	TA2RJ TI4SU*
Y* D	YP0I YP0S	YO2II YO5BFJ
U* L*	YP2KVV YP2R	YO9FNR YO2DFA
H	YP2Y YP4ESP	YO2BYD YO4CCD
	YP5Z	YO5CRQ
/6	YP6P YP7CB	YO6EZ* YO7MR
	YP8I YP8S	YO8KAE* YO8KGA
	YP9KVV YR1C	YO9FNR YO4NA
)	YR1Z YR2X	YO9GZU YO2KBO
.*	YR2Y	YO2KQT
NF PV	YR3R YR45KAN	YO3BL YO8GF
I	YR5N YR5P	YO5PBF YO5DAS
3	YR60KSU YR6F	YO6KSU YO6KBM
)	YR6M	YO6MT YO7KFM
	YR7KFM Z21BC (>6/08)	NI5DX
X	Z22JE Z34M	K3IRV DJ0LZ*
Л	ZB2/DL5KX ZB2CN	DL5KX DJ9WH*
!	ZD8UW ZF2NN	G7VJR WQ2N
))*	ZF2VQ	W2WQ
, ·	ZK2CA ZL2/OK1JBR	NW7O OK1JBR
)	ZL4U ZP6/N3BNA	ZL3SV KA2AEV
PR	ZV2UNI ZX1SG	PY2AA PY1RJ
	ZY5PGA	PY5PDC
PR	* nur direkt	
G ND	73 da DI 5K7A	

73 de DL5KZA QSL-ROUTES@funkamateur.de

QSL-Splitter


Im Berichtszeitraum gab es unter anderem die folgenden direkten QSL-Eingänge: 7Z1SJ, A92GT, B1Z (alle über EA7FTR), D4C (IZ4DPV), LU4ZS (LU4DXU), VU2NKS, VU4RG/VU4MY (GDXF), VU7SJ (DL9GFB), Z29KM (EA7FTR) sowie via Büro (oft via Manager): 3DA0PB, 3G1E, 5Z4DZ, 6W1SE. 7Z1HL, 9M4SDX, A61AS, CN8IG, CT/ DL5DSM, CU8/CT3FN, EJ7NET, EW1AK, EZ0AB, FG5FC, FM5CD, FP/JA9KRO/p, FR/F4BKV, GP4BJC/p, HB0/DJ3HJ, HB0/ PA6TUE, J28JA, JI1NJC/VP9, OD5NF, OH0X, OH3JF/OH0, PJ7/DG5XJ, RA2FF, RU2FM, UA0FAI, VP2EFB sowie ZY5P.

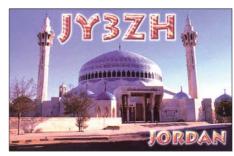

Steve, N3SL, weist darauf hin, dass die QSL-Route für die Conteststation GM7R über Kim Larson (Tochter von N3SL) geht. OSLs werden direkt oder via Büro beantwortet.

In Japan muss man für jedes zusätzlich benutzte DXpeditionsrufzeichen Gebühren zahlen, will man dafür QSL-Karten über das Büro empfangen und versenden. Das scheuen offensichtlich viele japanische DXpeditionäre, sodass deshalb manche QSLs einfach nur auf direktem Postweg erhältlich sind und Bürokarten unbeantwortet bleiben!

Zu Win-QSL-Policy von DF6EX äußert sich Rolf, DL7VEE: "Wenn ich so meine Erfahrungen zu den WWDX-Contesten bezüglich OSL-Rücklauf betrachte, bleibt festzustellen, dass ich manche seltene Stationen schon seit Jahren wiedertreffe, jedoch noch nie eine QSL via Büro, teilweise nicht einmal direkt, bestätigt wurde. Stationen, die keine QSLs schicken, bekommen auch keine Punkte mehr von mir in Contesten. LOTW ist für mich auch keine echte Alternative. Ich bin etwas altmodisch und sammle noch Papier-OSLs, natürlich keine e-QSLs, die nicht zählen."

In der Win-OSL von DF6EX ist seit Jahren die Rubrik "QSL-Moral" enthalten. Ab Mitte Januar 2009 gibt es nun eine eigenständige Win-QSL-Policy von DF6EX, die die QSL-Moral der seltenen Stationen und Manager auflistet. Gedacht für die OMs, die keine QSL-Manager-

Portalseite von Win-QSL


Datenbank wünschen bzw. eine andere nutzen. Die Idee ist ganz simpel: Bevor viel Geld in den Direktversand einer OSL investiert wird, erst einmal nachsehen, wie gut die Chance ist, eine Antwort zu erhalten. Zweiter Ansatz ist: Bestätigt ein Manager über Büro, ja/nein? So kann ich bereits im Pile-Up entscheiden, ob es für mich Sinn macht, mitzurufen.

Zukünftig werden vier Einträge pro Rufzeichen zur QSL-Moral möglich sein. Das Produkt ist voll Vista-kompatibel. Jedermann kann sich die neue Version unter www.wingsl.de/gslpolicy herunterladen. Für 100 Starts ist die Benutzung frei, dann wird es kostenpflichtig. Manfred plant, diese Win-QSL-Policy kostenlos an Ortsverbände abzugeben und erwartet dafür ein Feedback. Konkrete Nachfragen richten Sie bitte an df6ex@wingsl.de.

QSL via UA1RJ: Das "World Flora Fauna" (www.wff44.com) ist ein relativ junges Diplomprogramm, das Verbindungen mit Stationen aus Nationalparks bzw. Naturreservaten (siehe FA 10/08, S. 1123) honoriert. UA1RJ ist der QSL-Manager für die folgenden Stationen: RA3AUU/3 (Juli 08), RW3GW/3 (Juli 08), UE1RFF, UE1RFF/1 (Dezember 08), UE1RFF/3 (September/November 08), UE1TFF (Juli 08), UE1ZFF (Juli 08), UE3FFF/3 (Juli) sowie UE9WFF/1 (August 08).

Hannes, DL3NM, bekam jetzt nach fünf Jahren einen Direktbrief von XQ3ZW bestätigt und auch seine beiden damaligen IRCs zurück, wobei auf diesen das Ablaufdatum 31.12.06 eingekringelt war!

Tnx für die QSL-Karten via DG0ZB, DJ1TO, DL5ME und DL7VEE.

Rufzeichen	Adresse
3D2AA	Aisea Aisake, Box 786, Navua, Fiji
3D2MP	Michael S. Prakash, Box 5324, Raiwaqa
8P9NX	Peter Cross, 90 Greenpoint, St. Philip, Barbados
9M6BEN	Mohd Daud Bin Mohd Hisham, No. 49, Taman Selesa, Jalan Lintas, 88300 Kota Kinabalu, Sabah
A45WH	Sangeeth Musaliar, Box 1889 Postal Code 111, Seeb Airport
A45XR	Krzysztof Dabrowski, Box 2038, CPO 111 Oman
A61SA	Saleh Al-Ali, Box 67712, Sharjah
A71CW	Rashed Saffar Abdulla, Box 24773, Doha
AH2DT AP2MKS	Jason W. Springstead, Box 153240, Santa Rita, GU 96915 Khalid Shoaib, House 69, Dar-ul-Islam Colony, Attok City
CN8JQ	Mohamed Lahmar, Rue Jabir Ben Hayane 41, Pepeniere, Sale
DJ0LZ	Ace Jevremov, Box 14, 82378 Peissenberg
DJ9WH	Bertin Butz, St. Johannisrain 9, 82377 Penzberg
DK6CW	Alexander Polyakov, Box 3552, 49025 Osnabrück
E7SRRS	Savez Radio-Amatera Republike Srpske, Nemanjina bb - poligon, 89101 Trebinje
EP3HF	Sadegh Farzadkhah, Box 34185-1687, Qazvin
EP3SMH	Sayyed Mohsen Hosseini, Box 1441, 34815 Takestan
F4BQO	Claude Franck, 178 Rue Armand Duvivier, Bat le Ciceron, F–83600 Frejus
F4EGD	Sylvain Lefevre, 10 rue Ste Agathe, F-37390 Chanceaux sur Choisilee
FK8CP	Remi Touzard, B. P. 945, F-98845 Noumea Cedex
FR5DN	Philippe Mondon, 25 Rue de l'Oglise, F–97425 Les Avirons
FR5HA	Joseph Lallemand, 173 Rue Evariste de Parny, F–97421 La Riviere Saint Louis
FR5MV	Raymond Merle, 5093, Tour La Chaumire - Bd Saint-Francois, F–97400 St. Denis
HS0ZBS	Kurt Brauer, Box 75, Phanom-Sarakham, Chachoengsao 24120
HS0ZEE	Sheridon K. Street, P.O. Box 107. Chiang Mai Post Office, Chiang Mai 50000
HS0ZGD	Lindblom Stig, Jum Changphimai, 147/1-Moo 3, Tamboon Boot, Ban Ta Bong, Phimai, TH–30110
HS0ZIN	Nakhon Ratchashima Paul Davies, 238/144 m10 Nongprue Banglamung (Pattaya), Choburi 20150
HS0ZIQ	P.O. Box 443, Phuket Post Office, 83000 Phuket Island
I2DMI	Francesco Di Michele, Via Vergani 20, I–22063 Cantu - CO
IK2QPR	Paolo Fava, Via Bertani 8, I–46100 Mantova
IZ8CLM	Salvatore Rapacciuolo, Via Gambardella 120,
12000	I–80058 Torre Annunziata - NA
J39BS J60AN	Derek Steele, Box 536, St. George
J69AN JA1XGI	Dudley Du Boulay, Box 1154, Castries Haru Uchida, 2-30-11, Shintomi, Kawagoe, Saitama 350-0043
JA6EGL	Shoji Mike Miyake, Box 232, Hakata, 812-8799
JA6KYU	Hirotaka Suenaga, Shiraishi Ham Club, Box 6, Hizen-Nakabaru, 849-0191
JA6UBY	Yasuo Tajiri, Box 40, Nagasaki-North Post Office, Nagasaki-City, 852-8691
JD1BMM	Masafumi Ishihara, 2-305 Loran, 2-5-35 Miyazaki, Chuo-ku,Chiba, 260-0806
JE6DND	Katsuhiko Hayashida, 7-34-9, Nanakuma, Jonan-ku, Fukuoka, 814-0133
JG7PSJ	Hiroyuki Kawanobe, 1-4-1, Mikamine, Taihaku, Sendai, Miyagi, 982-0826,
JI5RPT	Makoto Koyanagi, 1-13-607, Mitsuzawakamicho, Kanagawa-ku, Yokohama, Kanagawa, 221-0856
JM1LJS	Hideyuki Kai, 4-22-15, Takata-Higashi, Kohoku-ku, Yokohama-City, 223-0065

JY4CI Rafig S. Farmawi, Box 616, Amman 11118 Mashour I. Haddad, Box 12012, Amman 11141 K0BAD Leslie D. Hittner, 1340 Conrad Drive, Wilnona, K2GSI Thomas R Metz 18 Harrison Ave. New Canaan

CT 06840 Louis N. Anciaux, Unit 9100 Box 3404, APO, AA 34002-3404, USA KG6UH

KH2JU Danilo I. Pobre, Box 22061 GMF, Barrigada, GU 96921 Tiny A. Gehrke, 959 Placer Ave, Manteca, CA 95536 LY5W Saulius Zalnerauskas Box 1081 Kaunas LT-49005 James T. Clary, Box 18095, Panama City Beach, FL 32417 ND9M Patrick Piesen, Hermans-Lybaertstraat 35 Bus 1, B–8301 Knokke-Heist ON7PP

Clemens Cornelissen, Hoogstraat 21, NL-5462-CW Veghel PJ2LS Loet van Sermondt, Kaya Lima 22 Muizenberg Nobo, Lars-Goran Persson, Svampvagen 5,

PA08XMASS

SM6CUK

SE-51634 Dalsjofors ST2EB Eihab Bannaga, Qinwan Co. P. O. Box 2256, Khartoum 11111

Tevfik Aydin Kazancioglu, P. O. Box 73, Karakoy, 34421 Istanbul TA1HZ TI4SU Bengt Halden, Box 9, 4437 Pital de San Carlos

Diamond Festival, 33 Rue Plaine Lune, Borj Louzir Ariana, 2073 Tunis TS75DF V73NS Neil Schwanitz, Box 8341, APO, AP 96557, USA Ed Kelly, Box 1555, Hamilton HM-FX, Bermuda

VP9GE Larry Arneson, PSC 466 Box 24 (DG-21 Annex 30), FPO, AP 96595-0024, USA VQ9LA W3HNK Joseph Arcure jr., 115 Buck Run Road, Lincoln University, PA 19352

WB2YOH Robert E. Nadolny, P.O. Box 73, Spring Brook,

Claude Laget, P.O. Box 1373 G.P.O., 99999 Phnom Penh Andy Chadwick, P.O. Box 36575, 5526 Dasaki Achnas XU7ABN

SOTA-QTC

Bearbeiter:

Dipl.-Ing. Harald Schönwitz, DL2HSC Försterweg 8, 09437 Börnichen E-Mail: dl2hsc@darc.de

■ SOTA 2009 aktuell

Im vergangenen QTC hatte ich die Mitteilung des Managementteams der Deutschen Mittelgebirge (DM) veröffentlicht, in der von der

Überprüfung der Berglisten berichtet wurde. Seitdem hat sich erneut eine ganze Menge geändert. Die eingesandten, nach P100-Regeln überarbeiteten Listen, wurden nochmals geprüft.

Dazu berief das Programm-Management-Team (PMT) extra ein neues Mitglied, das nun über die Fähigkeiten und Mittel verfügt, die Berge aller Assoziationen weltweit zu verifizieren. Marc, G0AZS, ist seit 1985 lizenziert und besitzt zusätzlich die Rufzeichen K1UG und SM7ZAU. Für die Arbeit mit den Berglisten nutzt er die kostenlose Software *LandSerf.* Sie kann von Interessenten unter *www.landserf.org* heruntergeladen werden. Mit dem Programm sind vielfältige Operationen unter Zuhilfenahme von Geodaten durchführbar.

Nach der Überprüfung der deutschen Berge durch LandSerf, die zum Jahreswechsel beendet wurde, zeigte sich das im Folgenden dargestellte Resultat (durch DM-MT überprüfte Listen Dezember 2008/Resultat G0AZS): BM: 209/47, BW: 127/147, HE: 120/88, NS: 32/13, NW: 33/25, RP: 134/115, SA: 19/8, SR: 17/16, SX: 98/37, TH: 73/53. Damit sind die Listen sehr übersichtlich geworden, das Referenzhandbuch weist nun statt 85 Seiten zu Beginn des Jahres 2008 nur noch 32 Seiten auf. Hinweise an das Programm-Management-Team, dass zur Erarbeitung der Listen durch die deutschen Regional- und Assoziationsmanager die amtlichen topografischen Karten der deutschen Landesvermessungsämter TOP50 genutzt wurden, stießen auf Unverständnis. Das ist insofern verwunderlich, da im deut-

DL2HSC auf dem "Alten Raupennest" (ex DM/SX-009) im Dezember 2008 Foto: K. Schönwitz

schen Referenzhandbuch explizit die Anwendung dieser Daten aufgeführt ist. Dort steht auch, dass ein Berg, um in die Listen aufgenommen zu werden, in diesen amtlichen Karten mit Namen und Höhenangabe verzeichnet sein muss. Das PMT wundert sich jedoch, dass es bei der Überprüfung mit der

neuen Software Berge gab, die nicht in den Listen stehen, aber die P100-Kriterien erfüllen. Sollte das Programm-Management-Team die Regelwerke seiner Assoziationen etwa nicht kennen? Weitere offensichtliche Fehler sollen in kommenden Ausgaben der Referenzlisten beseitigt werden.

Viele OMs in Deutschland haben in den vergangenen Monaten eine unermüdliche Arbeit geleistet (hier noch einmal Dank an das DM-MT und die Regionalmanager), um den Ansprüchen aus den neuen Regelungen zu genügen. Diese Leistung wird nun komplett in Frage gestellt. Da das PMT den deutschen Bergfunkern scheinbar keinerlei Kompetenz mehr zugesteht, wer soll dann diese neuerliche Arbeit leisten? Viele Aktivierer, die den ganzen Turbulenzen bisher gelassen gegenüberstanden und anstatt sinnlose Diskussionen in den SOTA-Reflektoren zu führen, lieber auf die Berge (die nun keine mehr sind) gingen und Funkbetrieb machten, haben das Handtuch geworfen und wenden sich Alternativen zu.

Wir sollten aber trotz aller Widrigkeiten das SOTA-Programm in Deutschland nicht aufgeben und die Organisatoren hierzulande weiterhin unterstützen, hat es doch in den vergangenen fünf Jahren dazu geführt, dass viele Funkamateure ganz neue Betätigungsfelder für ihr Hobby fanden oder sogar nach langer Funkstille wieder aktiv wurden.

■ General Mountain Award

Roberto, DJ2AY, teilte mit: GMA steht nunmehr für General Mountain Award (Allgemeiner Bergwettbewerb). Mit dem Freischalten der GMA-Plattform und einer einschneidenden Reduzierung aller deutscher SOTA-Berglisten startete erfolgreich der GMA als konsequente Fortführung des Bergfunkens. In der Region TH verlief der Übergang nahtlos. Unter anderen waren DJ3AX, DO1RGI, DL3AWK und DJ2AY als GMA-Aktivierer unterwegs.

Dank geht an die Programmierer des GMA Robert (noch ohne Rufzeichen) und Mario, DL4MFM! Mit ihrer Tätigkeit konnte die Produktionsplattform des GMA zum Start des neuen Bergfunkerjahres freigegeben werden. Sie ist unter www.bergwettbewerb.de bzw. www. mountain-award.org erreichbar. Noch ist die Plattform in ihrer ersten Ausbaustufe nicht ganz fertig. Es wird für die laufenden Arbeiten im Hintergrund um Verständnis gebeten. In Phase 1 soll der GMA-Basiswettbewerb störungsfrei funktionieren und der Import der bisherigen Bergfunkeraktivitäten (SOTA-Log) ermöglicht werden. In den ersten beiden Tagen haben sich bereits etwa 60 GMA-User auf der neuen Plattform registriert. Mit dabei sind auch OMs außerhalb Deutschlands.

Die Regeln des GMA sind nun auch in Englisch verfügbar. Die bis jetzt zum GMA gestellten Fragen sind in einer FAQ-Liste beantwortet. Inzwischen existiert auch eine GMA-Group auf http://de.groups.yahoo.com/group/dlGMA/join und unter www.flickr.com/groups/988181@N21 eine Möglichkeit, Fotos einzuspielen. Herzlichen Dank an alle YLs und OMs, die den Start des GMA möglich gemacht haben! Wer den GMA durch Mitarbeit im Team unterstützen möchte, wende sich bitte an DJ2AY (dj2ay@darc.de).

Packet-QTC

Bearbeiter:

Jürgen Engelhardt, DL9HQH Azaleenstr. 31, 06122 Halle Packet-Radio: DL9HQH@DB0ZWI E-Mail: dl9hqh@gmx.de

■ Digipeater

DB0PRA (Aachener Land)

Der Anfang November außer Betrieb genommene Server von DB0PRA konnte nach einem Monat seine Funktion erneut aufnehmen. Er erhielt in dieser Zeit eine neue Festplatte und ein anderes Board. Zudem hat man noch einige Konfigurationsversuche unternommen.

DB0FBG (Freiberg)

Keine der Linkpartner von DB0FBG sind derzeit mehr in Betrieb. Die Verbindungen in das PR-Netz laufen nunmehr über IGATE. Lediglich die Userzugänge lassen sich nutzen.

Der Antennenmast von DB0ZWI: Höhe 20 m und mit einer Arbeitsbühne befahrbar. Am Mast, in 5 m Höhe, ist die komplette Stromversorgung des Digipeaters, die durch ein Schaltnetzteil 230 V/12 V (80 A) realisiert ist, angebracht. In 18 m Höhe befindet sich der Schrank für die Linktransceiver sowie den Transceiver für die WLAN-Verbindung zur Hochschule in Zwickau.

DB0NOS (Oerlinghausen)

Einen Ausfall des Digipeaters gab es Anfang November zu verzeichnen. Hier hatten die Kleinnager wieder einmal zugeschlagen bzw. zugebissen. Im gesamten 19"-Gehäuse fanden sich die Ausscheidungen der Tierchen. Dabei waren auch etliche Kabel an- bzw. auch weggefressen. Um zukünftig solche ungebetenen Besuche zu verhindern, wurden die "Zugänge" mit Alu-Gitter bzw. PU-Schaum abgedichtet.

■ Linkstrecken

DB0LX (Ludwigsburg)

Nach Abschaltung von DB0LAI (Hohenstadt) wurde die Linktechnik bei DB0LX abgebaut.

■ Mailboxen

DB0LPZ (Leipzig)

Der Rechner, auf dem bisher die Mailbox lief, wurde aufgrund hoher Stromkosten abgeschaltet. Mit der Abschaltung der Mailbox fallen auch die Dienste Convers, TCPIP, IRC und APRS weg. User, die bisher die Mailbox von DB0LPZ nutzten, können auf DB0EXP ausweichen.

QRP-QTC

Bearbeiter: Peter Zenker, DL2FI Molchstr. 15, 12524 Berlin E-Mail: dl2fi@dl-qrp-ag.de Packet-Radio: DL2FI@DB0GR

■ Wikipedia für QRP und Selbstbau

Seit geraumer Zeit existiert unter http://de. wikipedia.org/wiki/QRP eine spezielle Abteilung für QRP und Selbstbau. Leider ist es offensichtlich für deutschsprachige Funkamateure nicht gerade reizvoll, sich daran zu beteiligen. Vielleicht liegt es daran, dass gut gemeinte Beiträge von selbsternannten Fachleuten immer wieder "platt" gemacht werden, sodass der Diskussionsteil inzwischen fast mehr Inhalt bietet als der eigentliche Themenbereich.

Dieter, DL2BQD, hat uns auf ein englisches Wiki aufmerksam gemacht, bei dem er selbst fleißig mitarbeitet. Dort finden sich inzwischen viel wertvolle Beiträge, die sowohl dem Anfänger als auch dem fortgeschrittenen Selbstbauer viele neue Informationen, Anregungen und Hilfen geben. Den freien Zugang zu diesem Senkrechtstarter findet man unter www.qrpedia.com. Einziger Nachteil: Man muss einigermaßen gut mit der englischen Sprache zurecht kommen, aber dieser Nachteil kann ja auch zum Vorteil gereichen – die meisten Beiträge sind so interessant, dass man zum Üben verleitet wird.

■ QRP-Report 4/08

Der letzte QRP-Report für das vergangene Jahr wurde Anfang Januar 2009 verschickt. Er enthält erneut interessante Beiträge aus verschiedenen Bereichen. Mein Freund Ade, WORSP, berichtet ausführlich über die Weiterentwicklung der C-Pole-Antenne, die ich vor einigen Jahren in [1] vorgestellt habe. Ade hat sich mit dem Projekt beschäftigt und aus dem C-Pole, der mich seinerzeit begeistert hat, den deutlich verbesserten Z-Pole, eine auch für die "langen" Bänder handhabbare Vertikalantenne entwickelt. Fieldday- und Portabelfreunde sollten sich unbedingt an einen Nachbau wagen. Für Freunde minimalistischer Funkgeräte hat sich unser Redakteur Ingo, DK3RED, viel Arbeit mit der Übersetzung des "Floh"-Projektes von Joan, EA3FXF, gemacht. Wer sich für Funkbetrieb mit Pixie, RockMite oder ähnliche Projekte interessiert, sollte sich den "Floh" auf keinen Fall entgehen lassen. Weitere Beiträge befassen sich mit einem Prüfgenerator, einem Rauschgenerator, einer pfiffigen Halterung, mit der sich eine Morsetaste auf dem Oberschenkel bedienen lässt, sowie dem Einsatz von Lithium-Akkumulatoren im K1.

Damit auch die Weiterbildung nicht zu kurz kommt, beschäftigt sich Walter, DL5WT, in dieser Ausgabe des QRP-Report mit der Spulen- und Kreisgüte – wobei sich dieser zweite Teil seines Beitrags speziell mit praktisch anwendbaren Messverfahren und deren manchmal überraschenden Ergebnissen beschäftigt. Wer kein Mitglied der DL-QRP-AG ist, diese pro Quartal erscheinende QRP-Zeitschrift aber trotzdem beziehen möchte, der kann sie beim Leserservice des FUNKAMATEUR [2] als Einzelexemplar bestellen.

Da die nächste Ausgabe sicher erneut genauso spannend wird, macht es Sinn, bei der Gelegenheit auch gleich Mitglied zu werden. Zur DL-QRP-AG tritt man ohne jeden Antrag einfach bei, indem man eine E-Mail an Frank, DL9VF (dl9vf@darc.de), schickt oder ihm mit der guten alten Post schreibt: Frank Vogel, Schillerplatz 17, 14471 Potsdam.

■ DARC-Selbstbau-Ortsverband

Meine Überlegungen zur Struktur des DARC e. V. in den vergangenen beiden OTCs haben viele deutliche Reaktionen hervorgerufen. Die meisten Zuschriften waren positiv, Ablehnung erfuhr ich eher von Mitgliedern der DL-QRP-AG, die befürchten, dass jede Form von Eingliederung der Arbeitsgemeinschaft in den DARC nur zu Bürokratie, Verwaltung und letztlich zum Tod der Arbeitsgemeinschaft führen würde. Ich hoffe, alle diese Bedenken ausgeräumt zu haben. Niemand, und ich schon gar nicht, hat vor, die Arbeitsgemeinschaft für ORP und Selbstbau aufzulösen. Wir werden weiterhin als loser Zusammenschluss von Funkamateuren mit ähnlicher Interessenlage bestehen. Wir brauchen nach wie vor kein Präsidium, keine Präsidenten, Beisitzer, Räte oder sonstige Funktionsträger. Wir werden, wie in den Jahren von 1997 bis heute, unser vierteljährlich erscheinendes Magazin (QRP-Report) für den Selbstbau im Amateurfunk herausbringen und den Selbstbau fördern. Das bedeutet keinesfalls, dass wir nicht aktiv an Veränderungen im DARC e. V. mitarbeiten wollen.

Klaus, DF3GU (klaus@aus-dem-schwarzwald. de), machte mit Unterstützung des Distrikts Baden im QRPforum (www.QRPforum.de) folgenden Vorschlag: "Ich sitze im Süden Deutschlands im Distrikt Baden. Hier kennt man eigentlich keine themenbezogenen Ortsverbände, sondern nur klassische, eben ortsbezogene OVs. Von den "Freunden des CCC" hatte man schon etwas gehört, konnte sich jedoch oft nichts darunter vorstellen. Dieses Umfeld fand ich vor einigen Wochen vor und begann, OMs und ganze Ortsverbände über die Idee eines themenbezogenen OVs zu befragen. Die Rückmeldungen waren positiv, man sah das als eine Bereicherung neben den "normalen" OVs. Hier einige Überlegungen zu einem OV-Leben in einer derartigen Struktur:

- OV-Abende per *Teamspeak* (kostenfreies Online-Konferenzprogramm; benötigt Computer, Mikrofon und Internetverbindung).
- QSL-Karten gibt es persönlich bei größeren Veranstaltungen (Ham Radio, Amtec, Interradio, Viadrina) oder per Post.
- Treffen auf den Bändern und bei den großen Messen (auch Grillfest in Friedrichshafen).
- Richtige und "assoziierte" Mitglieder (so muss nicht jeder seinen derzeitigen OV verlassen).

QRP-Frequenzen [kHz]

CW: 1843, 3560, 7030, 10 106 10 116, 10 140, 14 060, 18 096, 21 060, 24 906, 24 910, 28 060, 144 060

SSB: 1843, 3690, 3579, 7090, 14285, 18130, 21285, 24950, 28360, 28885, 144285

FM: 144 585

- Gemeinsame Know-How-Datenbank auf einer Webpräsenz (weniger zum diskutieren, mehr zum Projekte vorstellen).
- Alles, wozu ihr Lust verspürt.

Ich habe schon die Zustimmung des DV und einiger OVs, die so etwas gutheißen würden. Falls ihr Lust habt, bei diesem OV mitzumachen, dann meldet Euch bei mir. Ich benötige mindestens 15 OMs/YLs, die zu einer offiziellen Gründung hierher kommen würden und dann auch Gründungsmitglied im eventuell jüngsten DARC-Ortsverbandes Deutschlands werden möchten. Auf die oft ausufernde "Vereinsmeierei" möchte ich soweit es geht verzichten (das ist eh "unbadisch"). Ich wünsche mir einen lebendigen OV, in dem man viel lernen, mitnehmen und auch weitergeben kann."

Ich möchte Klaus unterstützen und hoffe, dass sich möglichst viel QRPer und Selbstbauer ihm anschließen. Ist der OV genügend groß, dann wird es möglich sein, über die Treffen anlässlich größerer Veranstaltungen hinaus und außerhalb des Internets regelmäßige regionale Zusammenkünfte von Teilgruppen durchzuführen. Es wäre ja auch denkbar, dass letztendlich in jedem Distrikt so ein Ortsverband entstünde. Lasst uns das Experiment wagen, die Freunde des "CCC" (Chaos Computer Club) zeigen uns seit Jahren, dass es funktionieren kann.

■ Gelegenheiten, sich zu treffen

Nach kurzer Winterpause geht es schon recht früh im Jahr wieder los! Unsere Freunde in Gießen wollen es genau wissen. Nachdem das ORP- und Selbstbau-Treffen im vergangenen Jahr so gut angekommen ist, hat man für den 28. 2. 09 (10 bis 18 Uhr) ein Mammut-Treffen vorgesehen. Wie 2008 sollen auch 2009 nach einem Einführungsvortrag durch DL2FI mehrere Stunden Diskussion und gemeinsames Erarbeiten von Lösungen zu Selbstbau- und Antennenfragen jedem Teilnehmer die Möglichkeit geben, sich selbst in das Treffen mit einzubringen. Wir wollen versuchen, auf jede Frage und Anregung einzugehen, und ich freue mich schon darauf, möglichst viele von Euch dort zu sehen. Der OV Gießen hat versprochen, für Antennen zu sorgen, sodass wir die Gelegenheit nutzen können, diverse Selbstbaukonstruktionen in der Praxis zu erleben. Schön wäre es, wenn viele Teilnehmer eigene Geräte mitbringen würden. Details erfahren Sie per Tel. oder E-Mail direkt von mir oder über www. darc.de/f/07/Amateurfunktreff_09.html.

Literatur

- Zenker, P., DL2FI: Flachstrahlende Vertikalantenne mit geringer Bauhöhe: der C-Pol. FUNKAMATEUR 54 (2005) H. 11, S. 1158
- [2] FA-Leserservice: Tel. (030) 44 66 94-72, Fax -69 bzw. shop@funkamateur.de


SWL-QTC

Bearbeiter:

Andreas Wellmann, DL7UAW
Angerburger Allee 55, 14055 Berlin
E-Mail: andreas.wellmann@t-online.de
Packet-Radio: DL7UAW@DB0GR

■ Internationales Jahr der Astronomie 2009

Vor 400 Jahren setzte Galileo Galilei als erster ein Fernrohr für astronomische Beobachtung ein und konnte bisher für das menschliche Auge unsichtbare Objekte am Himmel betrachten. Im Jahr 1609 veröffentlichte Johannes Kepler im Buch "Astronomia Nova" seine Erkenntnisse über den Verlauf der Planetenbahnen in unserem Sonnensystem. In Erinnerung an diese für die weiteren wissenschaftlichen Forschungen auf dem Gebiet der Astronomie so bedeutsamen Ereignisse wurde Ende 2007 von der 62. UN-Vollversammlung das Jahr 2009 zum "IYA – International Year of Astronomy" erklärt.

Kanadische Funkamateure werden in Zusammenarbeit mit der RASC (Royal Astronomical Society of Canada) öffentlichkeitswirksame Aktivitäten im IYA mit den Möglichkeiten des Amateurfunks unterstützen. Vom 1.1. bis zum 28.2.09 dürfen kanadische Funkamateure anstelle ihres regulären mit folgenden Sonderpräfixen am Amateurfunkdienst teilnehmen: VE – CG, VA – CF, VO – CH und VY – CI. Im Juni 2009 wird aus Victoria, der Hauptstadt der kanadischen Provinz British Columbia, zusätzlich die Sonderstation VE7YIOA aktiv sein (mehr auf www.hamiya2009.info).

Zeitzeichensender (CHU) mit Frequenzwechsel

Der kanadische Zeitzeichensender CHU ist seit dem 1.1.09 auf der neuen Frequenz 7850 kHz zu hören. Der Wechsel machte sich erforderlich, da die seit 70 Jahren genutzte Frequenz 7335 kHz nach den Festlegungen der ITU vom April 2007 in einem Bereich liegt, der dem Rundfunkdienst zugewiesen wurde. Seit dieser Zeit kam es auch vermehrt zu Störungen durch andere Stationen. CHU sendet neben der neuen weiterhin auf den altbekannten Frequenzen 3330 kHz und 14670 kHz. Die Aussendungen der Sprach- und Datensignale erfolgen in SSB im oberen Seitenband (USB).

Die Station CHU ist an Empfangsberichten sehr interessiert und beantwortet diese auch mit einer QSL-Karte. Die Anschrift: Radio Station CHU, National Research Council of Canada, 1200 Montreal Road, Bldg M-36, Ottawa, Ontario, Canada K1A 0R6 (E-Mail: radio.chu@nrc-cnrc.gc.ca).

Quelle: www.hamiya2009.info

Sat-QTC

Bearbeiter:

Thomas Frey, HB9SKA Holzgasse 2, 5242 Birr, Schweiz E-Mail: hb9ska@amsat.org Packet-Radio: HB9SKA@HB9PD.CHE.EU

■ AO-16 ist verstummt

AO-16 ist über Europa nicht mehr zu erreichen. Wenn es die Zeit von Mark, N8MH, erlaubt, will er den Satelliten über den USA so lange wie möglich reaktivieren. Die Dauer der Aktivierung reicht jedoch für den übrigen Teil der Welt nicht mehr aus.

■ Jubiläumsbetrieb von der ISS

Der Kenwood D700 wurde erfolgreich ausgetauscht, befindet sich aber auf einer tieferen Softwareebene als das Vorgängergerät. Trotzdem war es schon in SSTV, als Crossband-Repeater und in Packet-Radio mit 9k6 aktiv. Dies geschieht alles im Rahmen von "25 Jahre Amateurfunkaktivitäten im Weltraum".

Ein spezielles Zertifikat wird für Funkamateure ausgegeben, die die ISS empfangen oder über die internationale Raumstation eine Verbindung getätigt haben. Dabei gilt der Zeitraum vom 30.11.08 bis zum 15.1.09.

Um das Sonderdiplom zu erhalten, muss auf der QSL-Karte angegeben werden, ob Empfang "1 way" oder QSO "2 way" in SSTV, "voice", Schulkontakt "school" usw. Senden Sie Ihre QSL-Karte mit SASE an den zuständigen QSL-Manager. Für die europäische Region ist Christophe Candébat, F1MOJ, ARISS Europe QSL-Manager, 19 Chemin des Escoumeilles, 66820 Vernet les Bains, FRANKREICH, zuständig.

Weitere Adressen sind unter www.rac.ca/ ariss/oindex.htm#QSL's zu finden. Schreiben Sie zusätzlich "25th Anniversary Certificate" auf das Couvert. Ihr SASE (adressierter Rückumschlag) muss mindestens C4 groß sein, damit das Zertifikat nicht gefaltet werden muss, und ausreichend frankiert (IRC) sein. Die Urkunde wird dann frühestens im Februar/März 2009 verschickt.

QSL-Karte für Empfang von Compass-1

Für alle, die eine QSL-Karte oder eine E-Mail für den Empfang von Compass-1 geschrieben

haben, stehen nun auch QSL-Karten zur Verfügung. Weitere Informationen sind unter www.dk3wn.info/p/?p=1878 zu finden.

■ Längere Eklipsen bei FO-29

Nach dem 25.12.08 dauern die Eklipsen wieder länger. Dadurch können die Batterien nicht mehr voll geladen werden. So ist es möglich, dass FO-29 nur noch während eines Orbits pro Tag in Betrieb sein kann.

■ Kleiner Fortschritt bei AO-27

Mitglieder des Kontrollteams werden in der Hoffnung, dass das blockierte Modem neu startet (Reset), die Beobachtung der Batterien weiterführen. Der Satellit bootete in den primären "bootloader".

CW-QTC

■ Aktivitäten der AGCW e. V.

Conteste

Im Februar laden wir Sie – mit der Bitte um rege Teilnahme – zu zwei Veranstaltungen der Arbeitsgruppe CW (AGCW) ein: Jährlich am 1. Samstag im Februar, somit am 7. 2. 09, findet unsere 80-m-Handtastenparty statt – ein Muss für alle, die die Bedingungen zum Erwerb der "Goldenen Taste" erfüllen wollen. Für alle anderen Teilnehmer immer wieder ein großes Vergnügen. Am 18. 2. 09 würden wir Sie gerne

zum Schlackertastenabend begrüßen. Nähere Informationen erhalten Sie unter www.agcw. org/?Contests.

Internetpräsenz

Seit gut einem halben Jahr unterhalten wir im Internet neben unserer Mailingliste ein Forum. Dieses erreichen Sie unter http://forum.agcw. org. Sie finden dort Diskussionen über Telegrafie, Veranstaltungen, Conteste und DXpeditionen, CW-Lernen, Morsetasten und Technik sowie ein Board für allgemeine Diskussionen. Sämtliche Boards sind moderiert. Lesen kann jeder Interessierte, um eigene Beiträge zu verfassen ist eine Anmeldung erforderlich.

Über Ihren Besuch im Forum würden wir uns sehr freuen.

Kontakt

Ausführliche Informationen zu allen Themen finden Sie unter *www.agcw.org.* Ein Probeheft unserer Klubzeitschrift erhalten Sie bei Lutz Schröer, DL3BZZ, Am Niederfeld 6, 35066 Frankenberg, Tel. (0 64 51) 2 52 85, Fax (07 21) 1 51 52 68 77, E-Mail dl3bzz@agcw.de.

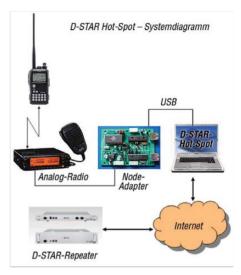
Dr. Detlef Petrausch, DL7NDF

D-STAR-QTC

Bearbeiter: Dipl.-Ing. Jochen Berns, DL1YBL Heyerhoffstr. 42, 45770 Marl E-Mail: dl1ybl@db0ur.de

■ Neues von D-STAR

DB0SIF ist eine neue D-STAR-Relaisfunkstelle mit Gateway in Gießens Innenstadt (JO40IN) in 230 m ü. NN auf 439.4875 MHz (-7,6 MHz). Damit gibt es in Hessen eine weitere Funkstelle mit viel Aktivität. Auch in der Schweiz entstand ein neuer D-STAR-Repeater: **HB9AW__C** auf 145,7875 MHz (-0,6 MHz) mit Gateway in Rickenbach/Luzern. Eine Website mit näheren Informationen ist unter www. relaissursee.ch erreichbar. Die Relaisfunkstelle ist etwa 2 km vom ehemaligen Landessender Beromünster entfernt. Der Sender wurde Ende 2008 nach 77 Jahren in den Ruhestand verabschiedet. Er sendet noch für ein paar Wochen seinen "Abschiedsbrief" (Text) mit verminderter Leistung. Danach könnte dieser prima Standort auch für D-STAR zur Verfügung stehen. Einen tollen Reichweitenrekord in D-STAR erzielte Sepp, DL5RJ, Mitglied der Betreibergruppe von DB0RDH. In einem OSO am 1. 1. 09 mit Peter, OE/DG9FFM, gelang es, auf 144 MHz eine Entfernung von 182 km zu überbrücken. DG9FFM befand sich mit einem IC-E92, Gummiwendelantenne und 0,1 W in Aufach/Tirol auf etwa 1200 m ü. NN in JN67AJ. Kurze Zeit später meldete sich sogar DC6PN aus Ulm. Er überbrückte 253 km. Hier einige Daten von DB0RDH: Der Standort befindet sich in Grandsberg zwischen Straubing und Deggendorf in Niederbayern (JN68KW), Höhe


850 m ü. NN. DV-Modus B-Range: Voice 439,475 MHz (-7,60 MHz); DV-Modus C-Range: Voice 145,7625 MHz (-0,600 MHz). Weitere Informationen auf www.darc.de/u14/db0rdh.html.

DB0RDH funktioniert so gut, dass es in Niederbayern, Teilen der Oberpfalz und bis weit nach Oberbayern empfangen werden kann. Auch viele Münchner Stationen arbeiten über diese Relaisfunkstelle und tragen sich in die Nutzerliste ein.

Über **DB0NG_B** (439,575 MHz) ist Ralf, ON4LFE, täglich in D-STAR QRV. Er hört den Repeater (160 km Entfernung) an einem IC-2820H jederzeit und kann problemlos mit kleinster Leistung über Marl arbeiten. Nach dem Umschalten auf das FM-Relais, das sich auf dem gleichen Standort/Antenne befindet, ist ein starkes Rauschen zu vernehmen.

Die größte Entfernung mittels D-STAR ist allerdings am 15.11.08 in Italien auf 23 cm überbrückt worden. Mimmo, IW2KDS, hat dort mit D-STAR EME gemacht und das Echo vom Mond einwandfrei zurückhören können. Die verwendeten Geräte waren ein ID-1 mit 1,2-KW-Endstufe und einem 7-m-Spiegel. Die Tests begannen bei Sonnenuntergang und wurden an einem IC-E92 mit Transverter oder SDR zurückgehört! Selbst "Pro 7" war vor Ort und machte Fernsehaufnahmen. Die URL für viele Bilder und weitere Informationen lautet www.crbr.it

Auch die Gruppe um Max, DL3MX, ist aktiv im Testen neuer D-STAR-Tools. Nach dem Aufbau mehrerer FA-DV-Adapter haben sie erfolgreich einen DV-Node-Adapter installiert. Mittels dieses Adapters und der *Hot-Spot-*Software bzw. der Software *DSTAR.exe* von Jakub Hruska lässt sich jedes D-STAR-Relais

Prinzipieller Aufbau eines DV-Node-Adapters Grafik: W9ARP

mit *dplus* ins heimische Wohnzimmer bringen, selbst wenn man nicht in einem Einzugsbereich wohnt. Die obige Grafik von W9ARP zeigt den prinzipiellen Aufbau mit dem Node-Adapter. Weitere hilfreiche Links zu dieser Thematik sind *www.w9arp.com/hotspot/* und *http://dstar.dyndns.org/rig.html.en.*

Kamil, DO7KW, hat auf http://newopenlab. radion.org/lab/D-Star_HOWTO einen sehr gut gemachten Beitrag zu D-STAR ins Netz gestellt. Die Verwendung eines "Wiki" und das Editieren von unterschiedlichen Personen hilft, solch eine umfangreiche Beschreibung möglichst ohne grobe Fehler und mit fortlaufenden Ergänzungen aktuell zu halten. Viele Anleitungen im Web sind meist fehlerhaft oder vollkommen veraltet.

Fieldday Dobl

Zum 21. Mal jährte sich im Juli 2008 der Fieldday in Dobl. Angespornt von den Veranstaltungen, die es schon damals gab, reifte in der Ortsstelle Graz die Idee, auch einmal etwas an Aktivität zu entwickeln, nachdem sich die Vereinstätigkeit längst im monatlichen Klubabend erschöpfte. Von OE6IEG stammte der Vorschlag, dafür den Platz um den Sendemast in Dobl zu nutzen. Da die Anlage vom ORF 1984 stillgelegt worden war und die Gemeinde den Grund mit allen Baulichkeiten erworben hatte, war alles perfekt, da der Bürgermeister dem Vorhaben wohlwollend gegenüberstand. Mit zwei Zelten vom Landesjugendreferat und mit viel Elan wurde 1988 der erste Fieldday in Dobl gestartet. Ein langjähriger Techniker des ORF, der den Sender in- und auswendig kannte, führte zu jener Zeit die Besucher fachkundig durch die Anlagen. Der damals noch nicht geerdete Mast diente mit wenig Aufwand von 40 m bis 160 m als riesige Vertikalantenne. Im Folgejahr wurde ein 17 m hoher Steckmast sowie ein gebrauchter Beam installiert. Damit war nun noch mehr Funkbetrieb möglich. Der 156 m hohe Sendemast wurde jedoch immer noch eifrig bei 160-m-Contesten genutzt. In den folgenden Jahren unternahm man verschiedene Versuche, z. B. Laser-Datenübertragung,

ATV, Satellitenbetrieb, Fuchsjagd und Flohmarkt gehörten dazu. Seitdem ist viel geschehen: Das Sendegebäude wurde für den Einzug für "Radio Antenne Steiermark" adaptiert und das Antennenhaus bekam eine neue Stromversorgung. Der Mast ist nun saniert und

Fieldday in Dobl, stets eine Woche nach der Ham Radio in Friedrichshafen: In Hintergrund der 156 m hohe Sendemast, leider inzwischen nicht mehr für Afu-Zwecke nutzbar. Foto: DK2WV

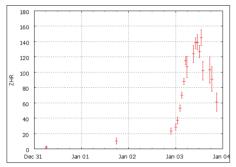
geerdet und an Handynetzbetreiber verpachtet. 2008 ist es den ehrgeizigen Funkfreunden aus Dobl gelungen, den Notstromgenerator aus dem Jahr 1939 wieder zum Laufen zu bringen – eine weithin vielbeachtete Leistung, die gehöriges Echo nicht nur in der Gemeinde Dobl fand. Der große Schiffsdiesel mit 1050 PS Leistung sicherte vormals über einen Generator die Stromversorgung des Senders. Das unterirdische Tanklager fasste je 25 000 l Treibstoff in fünf Tanks. Ausführliche Informationen finden Sie u. a. auf www.sender-dobl.at.

Der Organisationsaufwand erhöhte sich jedes Jahr. Doch nun hat sich ein Team gefunden, das mit Routine an die Sache herangeht und gemeinsam neue Herausforderungen sucht. So hat man den Platz um den Sender aufgerüstet bzw. wirtschaftlich genutzt. Amateurfunkmäßig entstand eine 23-cm-Relaisfunkstelle mit Echolink, ein Packet-I-Gate, ein Pactor-I-Gate, ein digitales ATV-Relais mit Linkstrecken zu anderen Netzen und fernbedienbarer Kamera, zuletzt noch ein 70-cm-Repeater (D-STAR).

Immer eine Woche nach der Ham Radio findet das Treffen in Dobl statt. Besucher und Flohmarkthändler kommen aus Italien, Kroatien, Ungarn und Deutschland, etwa 500 interessieren sich für unser Hobby. Allabendlich runden diverse Fachvorträge den Tag ab. Höhepunkte 2008 waren Berichte über Visalia und Dayton (USA) mit Vorführung des neuen Elecraft K3. Alle Interessenten bekamen D-STAR geduldig erklärt. Zudem standen ein Besuch durch die EMV-Hallen der Magna-Stey-Werke an, ebenso konnte man einem Vortrag über kommerziellen Seenotfunk verfolgen. Zum Programm gehörten eine Fuchsjagd mit Preis sowie die leibliche Versorgung.

Das Motto der Organisationsleitung (Helmut, OE6TXG, mit XYL Ella, OE6YEF) lautet: "Wir halten Dobl hoch, solange wir können und erwarten Euch auch Anfang Juli 2009"!

Dr. Karl-Heinz Illg, DK2WV

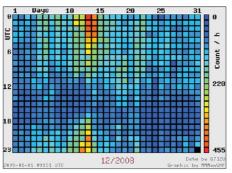

UKW-QTC

Aktuelles, Aurora, MS, EME: Dipl.-Ing. Bernd J. Mischlewski, DF2ZC Auf dem Scheid 36, 53547 Breitscheid E-Mail: df2zc@web.de

Magic Band, Topliste, Conteste: Dipl.-Ing. Peter John, DL7YS Am Fort 6, 13591 Berlin E-Mail: dl7yspeter@gmx.de Packet-Radio: DL7YS@DB0BLO

■ Gutes Quatrantiden-Maximum 2009

Grundsätzlich ist der Meteoritenschauer Quatrantiden etwas schwierig, denn sein Maximum erstreckt sich über nur gute neun Stunden. Wenn der Radiant des Schauers während dieser Zeit in Europa nicht über dem Horizont ist, dann fällt der Schauer für diesen Teil des



Nach sehr niedriger Meteoritenaktivität an den Tagen zuvor stiegen die ZHR-Werte am 3.1.09 stark an, um dann nach wenigen Stunden wieder ebenso stark zu fallen: typisch Quatrantiden.

Grafik: www.imo.net

Globus im betreffenden Jahr aus. 2009 war das glücklicherweise nicht der Fall: Die Ouatrantiden waren über Mitteleuropa sichtbar, das Maximum fiel auf einen Samstag und noch dazu auf den frühen Nachmittag - ideale Voraussetzungen für den Meteorscatter-Erfolg also. Bereits am 2.1.09 zeigte sich nachmittags eine erhöhte Meteoritentätigkeit. Auf der FSK-Anruffrequenz 144,370 MHz waren schon viele Stationen im QSO, mit lauten Reflexionen. Und am 3.1.09 ging es von beobachteten etwa 50 Meteoriten gegen 0300 UTC steil auf Werte von jenseits der 160 um 1300 UTC hoch. Von etwa 0500 UTC bis zum Schauermaximum lag die ZHR (Zenithal Hourly Rate - die Anzahl der Meteoriten, die innerhalb einer Stunde unter einem klaren, dunklen Himmel zu sehen sind, wenn der Schauerradiant genau im Zenith steht) stets über 100. Erst nach 1700 UTC ging es wieder runter. Doch selbst um 2000 UTC wurden immer noch Werte um 70 erreicht.

Um die FSK441-Anruffrequenz 144,370 MHz herum tobte richtiggehend das Geschehen. Zwischen etwa 144,330 und 144,400 MHz war es kaum noch möglich, eine freie Frequenz zu finden, auf die man nach einem CQ-Ruf QSY machen konnte. Fast überall waren Pings und Bursts aus ganz Europa zu beobachten. Insbesondere aus östlichen Richtungen kamen beständig starke Meteoritenreflexionen, etwa von RX1AS, RU1AA und UT2UB. 20 oder 30 s lange Bursts waren im Maximum nicht außergewöhnlich, sodass in FSK QSOs innerhalb von 2 min komplettiert werden konnten.

Auf der Monatsübersicht für Dezember 2008 sieht man deutlich die durch den Geminiden-Schauer am 13. und 14. 12. 08 erhöhten Reflexionszahlen.
Grafik: www.mmmonyhf.de

Wie viel schneller wäre das in SSB gegangen, doch die Anruffrequenz 144,200 MHz blieb meist ruhig. Auch Verbindungen um oder über die magische 2000-km-Distanz waren im Maximum zahlreich.

Zu Silvester 2008 zerstörte ein Sturm die 4er-Gruppe von SM2CEW (KP15CR). Aus den Resten konnte Peter am 1. und 2.1.09 noch zwei Yagis zusammenbauen, und so war SM2CEW bei den Quatrantiden dann doch noch QRV. Foto: SM2CEW

Ein weiterer erfreulicher Aspekt war europaweit die auffällige Zahl "neuer" Rufzeichen, sprich von MS-Newcomern, die diesmal ihre ersten erfolgreichen Gehversuche via Meteorscatter machten. Im Einzelfall hätte aber eine bessere Einarbeitung in diese spezielle Betriebstechnik sicher für mehr Erfolg gesorgt. So sendeten einige OMs in Deutschland statt in der zweiten in der ersten Periode (Konvention in Zentraleuropa ist aber, stets die zweite Periode zu senden), oder es wurden in der WSJT-Software die voreingestellten US-Parameter statt der europäischen Parameter verwendet: In Nordamerika gelten hinsichtlich Rufzeichen und Rapportvergabe andere Vereinbarungen als in Europa. Und für wen am 3.1.09 um 1403 UTC auf 144,370 MHz der 20 s lange Burst nur mit R27 bestimmt war, das weiß auch nur die sendende Station...

Guido, DL8EBW (JO31NF), freute sich ebenso wie alle anderen über einen nach vielen Jahren endlich wieder einmal überdurchschnittlich

FA-Topliste 1/09

Der Einsendeschluss für die nächste Topliste ist der 28.2.09. Bitte senden Sie die Anzahl der gearbeiteten Mittelfelder auf den Bändern oberhalb 30 MHz an die im Kopf des QTC angegebene Adresse des Sachbearbeiters (DL7YS). Dazu die Angaben Anzahl DXCC-Gebiete, ODX und den Vermerk, ob mit oder ohne digitale Betriebsarten gearbeitet wurde. Es brauchen keine QSL-Karten eingeschickt zu werden.

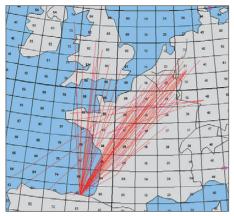
guten Quatrantiden-Schauer. Die meiste Zeit hat er fasziniert (und das nach immerhin mehr als 20 Jahren Meteorscatter-Erfahrung) dem Treiben im 144-MHz-Band zugehört. Nur ab und zu wurde mit seinen 750 W und zwei 2M²-Yagis auch einmal ein QSO gefahren.

Auf der Website von MMMonVHF (Make More Miles on VHF) ist seit einiger Zeit eine aussagefähige Übersicht über die Meteoritensituation auf 144 MHz eingestellt: www. mmmonvhf.de/ms.php. Hier wird für jeden Monat eine Übersicht der Meteoritenaktivität abgebildet. Diese "Todays Meteor Activity"-Grafik zeigt die tägliche Meteoritenaktivität auf, wie sie von Andy Smith, G7IZU, täglich stundenaktuell aufgezeichnet wird. Auf Andys Website www.tvcomm.co.uk/radio/ kann man darüber hinaus sogar die jährliche Meteoritenaktivität der vergangenen vier Jahre vergleichen. Auf einer zweiten Grafik erkennt man auch sofort die Reflexionslage der letzten ein bis sechs Stunden, was für eine kurzfristige Skedplanung äußerst hilfreich ist.

■ A43DLH - Sultanat Oman via Mond

Frank, DL8YHR, hat anscheinend eine gewisse Affinität für den arabischen Raum. Nachdem er Ende Juni 2008 bereits Ägypten per EME auf 144 MHz aktiviert hatte, verschlug es ihn diesmal auf die arabische Halbinsel. Mitglieder des Lufthansa Amateur Radio Clubs LARC sowie des DARC-OV F44 hatten eine Einladung der Royal Oman Amateur Radio Society ROARS erhalten, mit großzügiger Bereitstellung von Unterkunft, Funk-Örtlichkeiten, Amateurfunk-Equipment sowie Logistik. Vom 30. 10. bis 11.11.08 fand diese Aktivität,

für die das exklusive Rufzeichen A43DLH zugeteilt worden war, in Muscat statt. DL8YHR stieß am 4.11.08 zum Team, um auf 2 m und



Mit der 38-Element-Yagi glückte A43DLH unter anderem auch ein QSO mit Jan, DL9KR, der mit Oman sein 101. DXCC-Gebiet auf 70 cm abhaken konnte. Foto: DL8YHR

70 cm EME-Betrieb durchzuführen. Seine kombinierte 2-m-/70-cm-Yagi mit 18 Elementen für 144 MHz und 38 Elementen für 432 MHz war bereits vor Ort, nur das VHF-/UHF-Funkequipment inklusive der 1-kW-PA musste Frank noch mitbringen. Gleich nach Mondaufgang am 5.11.08 ging es los, und bis zum Ende der Aktivität am 11.11.08 fanden 150 verschiedene Stationen den Weg ins 144-MHz-Log.

■ Ergebnisse Contestpokal

Die UKW-Contest-Schlacht 2008 ist geschlagen. Die Redaktion des FUNKAMATEUR gratuliert den Siegern und Platzierten. Gegen Karl, DL9GK, der im vergangenen Jahr das bekannte QTH JO50TI "bewirtschaftete", war kein

Ein verfrühtes Weihnachtsgeschenk in Form troposphärischer Überreichweiten auf 144 MHz konnten die Funkamateure im Westen Deutschlands am 23. 12. 08 in Empfang nehmen. Quer durch Frankreich und die Biscaya ging es mit guten Feldstärken sogar bis nach Nordspanien.

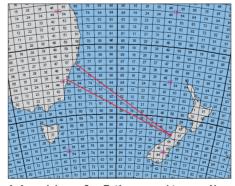
Grafik: www.mmmonvhf.de

Kraut gewachsen. Norbert, DL1SUN, wurde Vizemeister vor Bernd, DG6QF, der erstmals aufs Treppchen kam.

Und es war wie in vielen Jahren zuvor. Die ersten drei bzw. vier Plätze spielten in einer eigenen Liga, die Ränge fünf bis zehn folgen erst mit deutlichem Abstand. In der Mehrmannsektion im Jahr Eins nach den 10-fachen Seriensiegern vom OV Gotha gewann (darf ich schreiben "erwartungsgemäß"?) die Crew der TU-Dresden, DM7A, vor den "Hagelbergern", DF0YY, vom Berliner OV Lichtenberg und den "Mettmännern", DL0V, vom OV R15. In dieser Sektion sind die Punktabstände zu den weiteren Rängen sogar noch größer. Angeführt

DARC-Contest	pokal 2008	;	
Einmannwertun	ıg		
1. DL9GK	A28	9072	
2. DL1SUN	V14	7990	
3. DG6QF	Y43	7263	
4. DL1SUZ	V14	7150	
5. DF5GZ	A05	6170	
6. DH8WJ	X06	5867	
7. DG6ISR	Y43	5378	
8. DK1CB	Z28	5357	
9. DG2DAA	Y10	5288	
10. DK1KC	B10	5087	
Mehrmannwertung			
1. DM7A	S07	8937	
2. DF0YY	D26	8065	
3. DL0V	R15	7579	
4. DF0MTL	S34	6713	
5. DQ8N	X35	6646	
6. DR5A	R11	6573	
7. DL0NF	B25	4343	
8. DK0CG	B11	4290	
9. DK0GYB	W33	4186	
10. DK0PU	L30	4050	
OV-Wertung			
1. Elbe-Elster	Y43	38 149	
2. Dortmund	Z03	23 234	
3. TU-Dresden	S07	21777	
4. Rheine	N16	20 348	
5. Naila	B23	18 667	
6. Sömmerda	X06	17 345	
7. Schwerin	V14	15721	
8. Erding	C25	14923	
Wuelfrath	R29	14362	
10. Wolfsburg	H24	11 026	

von den Top-Ten-Platzierten DG6QF und DG6ISR siegte in der OV-Wertung erneut der OV Elbe-Elster vor dem VFDB Dortmund (Z03) und dem OV S07 der TU-Dresden. Eigentlich gab es keinen Contest in der Serie

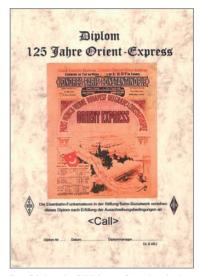

2008, der durch außerordentlich gute Ausbreitungsbedingungen auffiel – es gab keine Zufallssieger, die von besonderen Umständen, Duct-Ausbreitungen, E_S-Öffnungen profitieren konnten. Die Ergebnisse eines jeden Contests in jeder einzelnen Sektion mussten hart erarbeitet werden. Bei Wind und Wetter!

■ Sporadic-E auf der Südhalbkugel

Die Variante der Sporadic-E-Ausbreitung, die man in Europa auf 144 MHz kennt, tritt so gut wie ausschließlich im Sommer auf. Das heißt, die hiesigen Funkamateure müssen sich noch bis Mitte Mai gedulden, bevor es wieder losgeht. Anders sieht es auf der Südhalbkugel der Erde aus, wo derzeit Sommer herrscht: Am 8.12.08 beispielsweise entwickelte sich auf 2 m eine Sporadic-E-Ausbreitung zwischen Ostaustralien und Neuseeland. Bob, ZL3TY (RE57OM), bemerkte um 0338 UTC, dass der australische TV-Sender ABHN5A auf 138,276 MHz über mehr als 2000 km Entfernung gut mit Bild und auf 143,776 MHz schwach mit Ton zu empfangen war.

Also ging es sofort ans CQ-Rufen. Um 0357 UTC klappte ein 2-m-QSO mit VK2GKA in QF55 mit beiderseits 599 über 1966 km. Im Anschluss daran ging VK2KK leider im QSB unter. Dafür reichte die Reflexionsfähigkeit der E_S-Wolke aber eine halbe Stunde später wieder, sodass ZL3NW (RE66HO) mit VK2ZT in QF67 bei beiderseits 53 in SSB eine Verbindung machen konnte. Dabei betrug die Entfernung 2161 km. Die australische Station wurde auch von ZL3JT (RE66GK) über nun 2163 km gearbeitet. Und schließlich kam auch ZL3TY noch einmal zum Zuge und loggte VK2ZT.

Ein wesentlicher Unterschied zu Sporadic-E in Europa ist nicht zu übersehen: Es gibt kaum Überraschungen. Aus Neuseeland geht es, wenn das Band offen ist, immer nur bis zur


Aufgrund der großen Entfernung geht es aus Neuseeland per Sporadic-E stets nur nach Australien. Grafik: www.mmmonvhf.de

Ostküste Australiens, sodass man selten etwas Neues erreichen kann, sondern meist "alte Bekannte" trifft: Stationen also, die man bereits von vielen QSOs kennt. Da sind wir in Europa doch besser dran, wo gerade im Süden und im Osten oft seltene Rufzeichen und Locatoren auftauchen; Stationen, die man aufgrund ihrer QRP-Ausrüstung außer via $E_{\rm S}$ auf 2 m nie erreichen könnte.

Diplome

■ Kurzzeitdiplom 125 Jahre Orient-Express

Im Juni 1883 verkehrte erstmalig der legendäre Luxuszug Orient-Express. An dieses Ereignis wollen die Eisenbahn-Funkamateure (EFA) im Deutschen Amateurradio-Club e. V. durch die Herausgabe dieses Kurzzeit-Diploms erinnern. Es kann von allen Funkamateuren und entsprechend SWLs im Zeitraum vom 1.7.08 bis 31.12.09 beantragt werden.

Das Diplom ist DIN A4 groß, es ist vierfarbig auf 100 g/m² schwerem, chamoisfarbenen Strukturpapier gedruckt und zeigt in der Mitte eine 115 mm x 145 mm große, farbige Wiedergabe des ersten Werbeplakates für den Orient-Express von 1883.

Für den Erwerb gelten alle Verbindungen mit Funkamateuren aus den Ländern, durch die dieser legendäre Zug gefahren ist. Das sind Großbritannien, Frankreich, Deutschland, Österreich, Ungarn, Jugoslawien (heute Serbien), Bulgarien und die Türkei. Es zählen alle Bänder und Sendearten, ausgenommen Packet-Radio und Echolink. Es müssen Verbindungen mit mindestens sieben der genannten Länder nachgewiesen werden. Das Diplom kann auch für ein Band oder eine Sendeart ausgestellt werden

Der Diplomantrag ist mit einem Logbuchauszug sowie einer Gebühr von 5 € an den Diplommanager Hans Piehler, DL8ARJ, August-Bebel-Str. 5, 07639 Bad Klosterlausnitz, zu senden. Die Diplomgebühr kann man auch auf das Konto der Eisenbahn-Funkamateure Nr. 952 101 bei der Sparda Bank Hessen, BLZ 500 905 00, unter Angabe des Rufzeichens einzahlen.

Stand Juli 2008, von DK9VB

■ SOS-Kinderdorf-Diplom

Neuer Diplommanager für das SOS-Kinderdorf-Diplom des OV S54 ist ab sofort Daniel Schirmer, DL5SE, Am Teich 15, 25917 Stadum. Die ausführlichen Bedingungen zum Erwerb des Diploms finden Sie auf www.darc.de/s54/diplom.html.

Holger Trepte, DF7DF

DL-QTC

■ 32. Gigahertz-Tagung

Am 14.2.09 findet die traditionsreiche Gigahertz-Tagung in Dorsten statt. Auf dem Programm stehen u. a.: Verleihung der UKW-Contestpokale 2008; Transvertertechnologie im Wandel der Zeit mit DB6NT; DK2FD zeigt Bau und Vermessung eines 125-cm-Parabolspiegels; DC0DA referiert über BBT-Geräte und Module für 122 GHz; DJ7GP wird über ein Rubidium-Normalfrequenz-Oszillator berichten und DK2FD, unterstützt von DJ6JJ und DH6WA, wird mit einem ganzen Messpark speziell für Gigahertz-Belange anrücken.

Die Tagung findet von 8.45 bis 16.45 Uhr in den Räumlichkeiten der Volkshochschule/Bibliothek, Bildungszentrum Maria Lindenhof, Im Werth 6, 46482 Dorsten, statt. Eine Einweisung via Funk wird es nicht mehr geben. Auf der Internetseite der Tagung (www.ghz-tagung.de) ist unter dem Menüpunkt "Anreise/Unterkunft" eine detaillierte Wegbeschreibung zu finden. Bei weiteren Fragen wenden Sie sich an Peter Hörig, DL4BBU, Tel. (0 23 62) 4 19 59, dl4bbu @darc.de. Peter Hörig, DL4BBU

■ 14. Afu-Flohmarkt Kaarst

Der OV Kaarst, DOK R31, veranstaltet am 28.2.09 seinen traditionellen Amateurfunk-Flohmarkt. Veranstaltungsort ist das Georg-Buechner-Gymnasium, Am Holzbüttger Haus, 41564 Kaarst-Vorst. Beginn ist um 8.30 Uhr, Veranstaltungsende gegen 13.30 Uhr. Einlass für Aussteller ist um 7 Uhr. Tische sind mitzubringen. Mehr Informationen (auch zur Reservierung) unter Tel. (02131) 769582 oder Fax (02131) 769583 bzw. E-Mail flohmarkt@mse-web.de oder auch www.r31-kaarst.de.

Für das leibliche Wohl ist gesorgt, genießen Sie unsere traditionelle Cafeteria. Parkplätze stehen in ausreichender Anzahl zur Verfügung. Eine Einweisung erfolgt auf 145,500 MHz.

Michael Siebert, DF2EQ

■ 15. Berlin/Brandenburger Antennen-Fieldday

Am 1.5.09 findet der 15. BAF, der Berlin/Brandenburger Antennen-Fieldday, auf dem Mühlenberg (Fliegerberg) bei Groß Machnow an der B96, statt. Beginn ist um 10 Uhr, eine Einweisung findet auf 145,550 MHz statt. Die GPS-Daten lauten 52° 16' 49,60" Nord und 13° 27' 51,61" Ost (JO62RG). Der BAF findet nur bei trockenem Wetter statt.

Sicherlich wird es auch beim 15. BAF wieder selbst gebaute Antennen und Geräte zu bestaunen geben und leckeren Kuchen zum Selbstkostenpreis. Denn neben dem Funken und dem Testen von Antennen soll auch das Miteinander und leibliche Wohl im Mittelpunkt stehen (es darf gegrillt werden). Ein Flohmarkt aus dem Kofferraum heraus ist ebenfalls möglich (bitte nur OM zu OM, keine Händler).

Eingeladen sind auch Gruppen, die einen Beitrag über Sendetechniken (z.B. ATV, QRP, CW, D-STAR) leisten, Geräteselbstbauer und Antennenbastler sowie Digitalfunker. Der BAF ist eine gute Möglichkeit, um anderen Funkfreunden seine Eigenbauten vorzuführen oder

Impressionen von einem der letztjährigen Antennen-Feldtage auf dem Fliegerberg Foto: DH7AEK

sich selbst Anregungen zu holen. Auch diejenigen, die sonst keine Antennen aufbauen dürfen, haben hier die Möglichkeit, QRV zu sein. Für Jugendliche besteht zudem die Möglichkeit, Kontakt mit Jugendgruppen der Distrikte Berlin/Brandenburg zu knüpfen.

Das BAF-Team würde sich freuen, wenn Sie wieder recht zahlreich mit Ihren Familien und Freunden teilnehmen würden. Mehr Informationen unter www.fred-schulzke.de. Nachfragen und/oder Anregungen können über dh7aek @email.de gestellt werden.

Fred Schulzke, DH7AEK

Unterstützung bei Gebühren für den Klubstationsbetrieb

Die Juristische Verbandsbetreuung unterstützt Ortsverbände bzw. Gruppierungen mit Klubstationen für den Fall, dass bei Adressänderungen oder Ummeldungen von Verantwortlichen erneut Gebühren gemäß Amateurfunkverordnung in Höhe von 110 € verlangt werden.

Mustertexte für entsprechende Widersprüche sind im Mitgliederservicebereich unter Juristische Beiträge/Juristische Verbandsbetreuung zu finden. Die Unterstützung entbindet nicht von der Verpflichtung zur Zahlung der Gebühren, falls der Antrag auf Aussetzung der Vollziehung oder der Widerspruch keinen Erfolg haben. Der DARC e. V. ist bemüht, sich um die Klärung der Frage in Form eines Musterverfahrens für die Funkamateure zu kümmern. Die Frage, ob Widerspruch eingelegt wird, unterliegt jedoch der individuellen Entscheidung.

DL-Rundspruch des DARC e. V. 1/09

■ KC85-Treffen

Das 15. Treffen des KC85-Klubs findet vom 27. bis 29. 3. 09 in Schönwalde bei Berlin statt. Mehr Informationen und Hinweise zur Anfahrt können Sie unserer Homepage www.iee.et.tu-dresden.de/~kc-club/ entnehmen. Anmeldungen sind bei Frank Dachselt (E-Mail dachselt @iee1.et.tu-dresden.de) erwünscht.

L. Stephan (Istephankc85@telta.de)

■ Gießener Amateurfunktreffen

Die OVs Gießen (F07), Wetzlar (F19) und die DL-QRP-AG laden vom 28. 2. bis 1. 3. 09 zum 2. Gießener Amateurfunktreffen ins Bürgerhaus Gießen (Ortsteil Klein-Linden) ein. Der Samstag startet ab 10 Uhr mit einem zwanglosen Treffen von Mitgliedern der DL-QRP-AG und interessierten Funkamateuren. Am Sonntag öffnet der Flohmarkt (Neu- und Gebrauchtwaren) um 9 Uhr. Vorträge, Vorführungen, Aktionen zu APRS, ATV, Ausbildung,

CW, Digitalmodes, Jugendarbeit, Notfunk, QRP, SAT, Selbstbau und YL-Themen runden das Angebot bis 16 Uhr ab.

Hans-Peter Rust (dl6fap@darc.de)

■ Treffen der Betreiber automatischer Stationen

Am 21.2.09 MEZ treffen sich die Betreiber automatischer Stationen auf Einladung der Funksparte um 15 Uhr im "IBM-Klub" an der Gutenbergstraße in Laatzen, südlich der Messe. Einen breiten Teil dürfte sicherlich wieder der Erfahrungsaustausch untereinander einnehmen.

Karsten Heddenhause, DC7OS

■ CW-Lehrgänge

Zwei Telegrafielehrgänge, einmal für Anfänger (jeweils Donnerstag 18 bis 20 Uhr) sowie für Fortgeschrittene (ebenfalls Donnerstag von 20 bis 22 Uhr) starten am 5.3.09 im Klubheim der FAN (Funk Amateure Neustadt/Weinstr. e. V.), Karolinenstr. 99, 67433 Neustadt/Weinstr. (nähe Schützenhaus). Ein Informationsabend findet am 26.2.09 um 19 Uhr im Klubheim der FAN statt. Anmeldung bei Gerhard Füßer, DL8UZ, Scheffelstr. 15, 67454 Haßloch, E-Mail dl8uz@gmx.de, Tel. (06324) 989286, www.darc.de/distrikte/k/13.

Nationaler Radio-Flohmarkt in den Niederlanden

Die VERON, Abteilung 's-Hertogenbosch, organisiert den 34. Nationalen Radio-Flohmarkt am 14.3.09. Er findet erneut im Autotron an der A59 ('s-Hertogenbosch – Nijmegen) in Rosmalen, einem Vorort von 's-Hertogenbosch, statt. Der Weg ist ab der A2 bzw. A59 gut ausgeschildert. 2008 kamen über 4900 Besucher. Der Markt zählt in diesem Jahr mehr als 320 Stände und das Angebot ist sehr vielfältig. Es ist zwar ein Flohmarkt, aber es dürfen nicht nur

gebrauchte, sondern auch neue Geräte und Zubehör angeboten werden, ebenso wie neue Antennen, Bauteile, Computer, Computerteile oder auch Messgeräte.

Geöffnet ist von 9 bis 15.30 Uhr. Der Eintritt beträgt 6 € pro Person. Es stehen ausreichend Parkmöglichkeiten zur Verfügung. Die gemütlichen Restaurants laden von 8 bis 15.30 Uhr ein. Wir freuen uns auf Ihr Kommen.

Ausführliche Informationen gibt es unter www. radiovlooienmarkt.nl, via E-Mail info@radio vlooienmarkt.nl oder über Telefon +31 (0) 6 13 56 13 25 (Anrufbeantworter).

E. Elstrodt, PA2ELS

Bearbeiter: Ing. Claus Stehlik, OE6CLD Murfeldsiedlung 39, 8111 Judendorf E-Mail: oe6cld@oevsv.at

■ ATV-Tagung in Ried

Am 29.11.08 fand auf Initiative des ATV-Referates des DV/ÖVSV, Ing. Max Meissriemler, OE5MLL, in Geiersberg bei Ried eine gutbesuchte ATV-Tagung statt. Das Programm war bestückt mit Highlights und die Liste der Vortragenden konnte sich sehen lassen. Die ersten Powerpoint-Präsentationen sind bereits eingestellt und können unter den nachstehenden Links heruntergeladen werden.

Roland, OE3NRS, hielt einen vielbeachteten Vortrag über das ATV-Netz. Eine von Robert, OE6RKE, im Jahr 2006 gehaltene Präsentation über das zukünftige digitale Breitband (Backbone OE) zeigt nun erste Früchte. Erfolg versprechende Versuche laufen in OE2, OE3 und OE6. Philipp, OE2AIP, wurde als technischer Projektleiter "Digitaler Backbone OE" vorgestellt. Die ATV-Präsentation finden Sie unter www.oevsv.at/opencms/download/ATV/ATV00 45.pdf; Informationen zu "Digitaler Backbone OE" auf http://multimedia.oevsv.at/geiersberg 2008/Projekt-Alan-DigitalerBackboneOE-Vor tragGeiersberg2008.ppt.

■ Klubabend ADL322 Schwechat

Am 11. 2. 09 findet ab 19 Uhr in den "Rannersdorfer Stuben", Hähergasse 33, 2320 Schwechat/Rannersdorf, der Klubabend des ADL322 statt. Im Rahmen dieses Abends gibt Christian, OE3CJB, eine Einführung in die Spektralanalyse. Themenschwerpunkte sind: Worum handelt es sich bei einem Spektrum? Welche Mes-

sungen lassen sich durchführen und was können wir daraus herauslesen? Wie funktioniert ein Spektrumanalysator? Worauf muss man im Umgang mit Spektrumanalysatoren achten? Abschließend ist eine Live-Demonstration eines modernen Spektrumanalysators mit der Möglichkeit, Messungen durchzuführen, vorgesehen. Einige Beispiele: Wie sauber arbeitet mein Homemade-Transceiver? Was für Oberwellen produziert er? Welche Sendeleistung bietet er?

■ Workshop zum Aufbau eines AATiS-PSK31-Controllers bei OE9XRV

Für den Empfang von PSK31-Signalen wird üblicherweise ein Rechner mit Soundkarte benutzt. Dass es auch mit deutlich weniger Aufwand geht, zeigt der Bausatz AS631, der vom Arbeitskreis Amateurfunk und Telekommunikation in der Schule (AATiS, www.aatis.de) in begrenzter Stückzahl zum Selbstkostenpreis von etwa 50 € aufgelegt wurde. Mit einem einfachen Tiefpassfilter und einem RISC-Microcontroller lassen sich die PSK31-Zeichen auf einem kleinen Grafikdisplay anzeigen. Und mit einer angeschlossenen PC-Tastatur kann der PSK31-Controller auch sendemäßig ein 1000-Hz-PSK31-Signal erzeugen. Die neueste Softwareversion vom Herbst 2008 bietet sogar die Möglichkeit des Empfangs von Funkrufsignalen im POCSAG-Protokoll.

Die Bausätze konnten erstmals auf der Ham Radio 2008 in Friedrichshafen bestaunt werden. Harald, OE9HLH, gelang es, zwei Seminare in Vorarlberg zu organisieren. Es waren die ersten, die in Zusammenarbeit mit dem AA-TiS in Vorarlberg abgehalten wurden.

Am 25.10. und am 1.11.08 wurden bei der Klubstation OE9XRV in Bregenz in Zusammenarbeit mit dem AATiS e. V. die Seminare zum Aufbau des PSK31-Controllers abgehalten. Insgesamt 15 Funkamateure aus ganz

Workshop zum Aufbau eines AATiS-PSK31-Controllers bei OE9XRV Foto: OE9XRV

OE9 und dem benachbarten Lindau am Bodensee konnten einen Bausatz aufbauen. In jeweils vier Stunden wurden die Bausätze fertig zusammengelötet, getestet und in das Gehäuse eingebaut. Die gemeinsame Lötaktion brachte jede Menge Spaß.

Zur Nachbesprechung ging es in den Klosterkeller, in dem man den Tag auf gemütliche Art und Weise ausklingen ließ. Dabei wurden natürlich schon Pläne für die nächsten Aktivitäten geschmiedet.

■ 25 Jahre Uhrtum in Bruck/Mur

Die Ortsstelle Bruck/Mur wurde vor 25 Jahren von einigen Funkamateuren gegründet. Seitens der örtlichen Stadtgemeinde hat man den renovierungsbedürftigen Uhrturm am Schlossberg als Klublokal zur Verfügung gestellt. Dieser ist mit sehr viel Eigeninitiative und Spenden der Brucker Geschäftswelt zu einem obersteirischen Zentrum des Amateurfunks ausgebaut worden, das in Österreich seinesgleichen sucht. Die Eröffnung erfolgte am 12. 11. 1983.

An dieser Stelle sei allen gedankt, die daran mitgewirkt haben, dieses Kommunikationszentrum der Funktechnik in Bruck an der Mur zu errichten und nunmehr zu betreiben. Die Klubabende finden an jedem 2. Freitag im Monat um 19 Uhr statt.

Bearbeiter: Perikles Monioudis, HB9IQB Hohlstr. 86b, CH-8004 Zürich E-Mail: operator@hb9iqb.ch

■ DX-Vortrag

Die USKA-Sektion Bern organisiert am Mittwoch, den 25.3.09, ab 20 Uhr, in Münchenbuchsee einen Vortrag über DX-Tätigkeiten. Referent ist Jürg, HB9BIN. Mehr Informationen finden Sie auf www.hb9f.ch. Jürg referiert bereits im Februar zum Thema DXen, und zwar am 18.2.09 bei der USKA-Sektion Solothurn. Mehr dazu auf www.hb9ba.ch.

■ Schweizer Sonderpräfixe

Die Union der Schweizerischen Kurzwellen-Amateure USKA feiert ihr 80-jähriges Bestehen. Aus diesem Anlass hat das Bundesamt für Kommunikation Bakom auf Antrag der USKA Sonderpräfixe für die Schweizer Funkamateure genehmigt. Diese können von allen Schweizer Funkamateuren verwendet werden, unabhängig davon, ob sie der USKA bzw. einer USKA-Sektion angehören oder nicht. Die Sonderpräfixe HE8 und HB8 richten sich nach den drei derzeit geltenden Genehmigungsklassen Cept. 1, Cept. 2 und Konzession 3.

Die Schweizer Präfixe der Klassen Cept. 1 und 2 lauten üblicherweise HB9 und können nun in HE8, der Präfix der Klasse 3 von HB3 in HB8 verändert werden, und zwar nach Gusto, ohne Papierkram und noch bis zum 31. 12.09.

■ D-STAR-Vortrag

Die D-STAR-Technologie erfreut sich auch in der Schweiz einiger Beliebtheit. Doch was

Die D-STAR-Relaisfunkstelle HB9BO samt Antennenanlage auf dem Schilthorn, JN36WN Foto: HB9BO genau ist D-STAR und wie funktioniert es? Antworten auf all diese Fragen gibt Axel, HB9SJE, am 30.3.09, ab 20 Uhr, in seinem Vortrag, in dem er auf die neuartige Relaisfunkstellen-Technik eingeht. Veranstaltet wird dieser Vortrag von der USKA-Sektion Luzern. Mehr Informationen dazu unter www.hb9lu.ch.

■ 50-MHz-Sonntagsrunde

Wie Amateurfunk.ch mitteilt, trifft sich stets sonntags um 10.30 Uhr (HBT) die Sonntagsrunde der Ostschweiz auf 51,490 MHz in FM. Um 10.45 Uhr wechselt sie dann auf 50,160 MHz in USB. Die Runde hat eine langjährige Tradition. Mit der Freigabe der Antennenpolarisation und der Leistung von 100 W für das 6-m-Band hoffen die passionierten Teilnehmer, dass sich weitere Stationen an der Runde beteiligen.

Februar 2009

31. 1. - 1. 2.

1200/1200 UTC **EPC WW DX-Contest** (BPSK125)

1.2.

0700/1600 UTC DL-Februar-QSO-Party (CW/SSB/FM)

3, 2,

1800/2200 UTC NAC/LYAC 144 MHz (CW/SSB/FM) 2000/2230 UTC G-Aktivitätscontest 2 m (CW/SSB)

4. 2.

Notrufrunde des LV3 auf 3643 kHz ab 19.45 Uhr (OE3ZK).

5. 2.

1800/2200 UTC NAC 28 MHz (CW/SSB/FM/Diai)

7. 2.

0900/1100 UTC **55. BBT 1296 MHz** (CW/SSB/FM) 0900/1500 UTC **Contest Romagna 432 MHz** (CW/SSB) 1100/1330 UTC **55. BBT 2320–5760 MHz** (CW/SSB/FM) 1200/2400 UTC **Black Sea Cup** (CW/SSB) 1600/1859 UTC **AGCW-Handtasten-Party 80 m** (CW)

7, -8, 2,

SOTA-Winter-Wanderwochenende. Mehr auf www.sota-dl.de/sc/sota-dm.htm.

0000/2359 UTC YLISSB QSO-Party (CW/RTTY) 0001/2359 UTC 10-10 Winter QSO-Party (Fone) 1200/1200 UTC WW PMC Contest (CW/SSB) 1800/1759 UTC Mexico Intern. Contest (RTTY) 1900/1300 UTC DARC-UKW-Winter-Fieldday (All)

8, 2,

Funkflohmarkt des OV Kiel (M06) ab 10 Uhr im "Hof Akkerboom" in der Stockholmstr. 159, 24109 Kiel-Mettenhof. 0000/0400 UTC North American Sprint Contest (CW) 0800/1300 UTC Contest Lombardia 144 MHz (CW/SSB) 0900/1100 UTC 55. BBT 432 MHz (CW/SSB/FM) 1100/1300 UTC 55. BBT 144 MHz (CW/SSB/FM)

10. 2.

1800/2200 UTC NAC/LYAC 432 MHz (CW/SSB/FM)

12.2.

1800/2200 UTC **NAC/LYAC 50 MHz** (CW/SSB)

13. – *15. 2.*

1400/0200 UTC YLRL YL-OM Contest (All)

14.2

32. Gigahertz-Tagung von 8.45 bis 16.45 Uhr in Dorsten. Mehr Infos auf S. 228 bzw. unter www.ghz-tagung.de. 1100/1300 UTC Asia-Pacific Sprint Spring (CW) 1200/1600 UTC VFDB-Contest (Teil 1 und 2) (SSB) 1700/2100 UTC FISTS Winter Sprint (CW)

14. - 15. 2.

0000/2359 UTC CQ WW WPX-Contest (RTTY) 1200/1200 UTC Dutch PACC Contest (CW/SSB) 1200/1200 UTC KCJ Topband Contest (CW) 2100/0100 UTC RSGB 1.8-MHz-Contest (CW)

15. 2.

0800/1100 UTC OK/OM-V-/U-/SHF-Contest (CW/SSB)

17.2

1800/2200 UTC **NAC/LYAC 1,3 GHz** (CW/SSB/FM)

18. 2.

1900/2029 UTC AGCW-DL-Schlackertastenabend (CW)

21.2.

Treffen der Betreibergruppen automatischer Stationen ab 15 Uhr im "IBM-Klub", Gutenbergstr., Laatzen. Mehr Infos auf S. 228.

1400/1700 UTC Feld-Hell Club Sprint (Feld-Hell)

21. - 22. 2.

0000/2400 UTC **ARRL International Contest** (CW) 0600/1800 UTC **REF-Contest** (SSB)

22. 2.

0900/1100 UTC **High Speed Club Contest (1)** (CW) 1500/1700 UTC **High Speed Club Contest (2)** (CW)

24. 2.

1800/2200 UTC **NAC 2320 MHz** (CW/SSB) 2000/2230 UTC **G-Aktivitätscontest 50 MHz** (CW/SSB)

27. - 28. 2.

2100/2100 UTC Russian PSK WW Contest (PSK31)

27. - 1. 3.

2200/2200 UTC CQ WW 160-m-Contest (SSB)

28. 2.

14. Afu-Flohmarkt Kaarst (R31) von 8.30 bis 13.30 Uhr in 41564 Kaarst-Vorst. Mehr Infos auf S. 228 sowie unter *www.r31-kaarst.de*.

0900/1300 UTC **55. BBT 24, 47 GHz+** (CW/SSB/FM)

28. 2. - 1. 3.

2. Gießener Amateurfunktreffen der OVs Gießen (F07), Wetzlar (F19) und der DL-QRP-AG im Bürgerhaus Gießen (Ortsteil Klein-Linden). Mehr auf S. 228.

1300/1300 UTC UBA DX-Contest (CW) 1800/0600 UTC North American QSO Party (RTTY)

Quellen: SM3CER Contest-Service, DARC-Contest-Kalender, ARRL Contest Calendar, DL-DX RTTY Contest Group

Inserentenverzeichnis

Andy Fleischer; Bremen	192
appello GmbH; Salzhausen	194
BEKO-Elektronik; Dachau	198
Bogerfunk Funkanlagen GmbH	195
Communication Systems Rosenberg	195
Dieter Knauer; Funkelektronik	192
Elektronik-Service; R. Dathe	2.US
Fernschule Weber	192
Funktechnik-Bernau; Oelde	194
Funktechnik Grenz	197
Funktechnik Seipelt	194
Haro electronic; Burgau	197
Heinz Bolli AG; Niederteufen	191/194
COM (Europe) GmbH	4.US
Kenwood Electronics Deutschland GmbH	3.US
KCT Weißenfels; D. Lindner	198
KN-Electronic; K. Nathan	191
Kusch; Dortmund	192
Loch Leiterplatten GmbH; Berlin	191
QRPproject	192
QSL collection; Wien	192
Reichelt Elektronik	124
Reimesch GmbH; Bergisch Gladbach	190
Reuter-Elektronik; Dessau-Roßlau	194
Rosenkranz; Darmstadt	190
Sander electronIC; Berlin	191
Segor electronics; Berlin	191
SSB-Electronic GmbH; Iserlohn	191
UKW Berichte Telecommunications18	38/193/197
von der Ley; Kunststoff-Technik	192
VTH; Baden-Baden	
WiMo GmbH; Herxheim189/19	33/196/200

Einem Teil der Abonnement-Auflage dieser Ausgabe liegt eine Katalog-CD der Firma WiMo Antennen und Elektronik GmbH, Herxheim, bei. Wir bitten um Ihre freundliche Beachtung.

Vorschau Heft 3/09

QRV auf dem Bodensee

Der Bodensee zählt als größtes Binnengewässer zu den beliebtesten Urlaubsgebieten Deutschlands und ist ein attraktives Segelrevier. Nach einigen allgemeinen Informationen zum Bodensee erfahren Sie etwas über Segelboote, die dortigen Möglichkeiten zum Unterbringen einer Amateurfunkstation und was die Bodenseeregion Funkamateuren zu bieten hat. Foto: DJ3TZ

Vielseitige LED-Anzeige

Die preiswert erhältlichen LED-Namensschilder mit Laufschrift lassen sich zu einer vielseitig einsetzbaren Anzeige umbauen, die beispielsweise die Temperatur des PCs darstellen kann, aber auch für andere Aufgaben geeignet ist. Foto: Köhler

... und außerdem:

- Batteriekennzeichnung erklärt
- CW-Zusatz für das FA-USB-Interface
- VXO auf Basis des FA-SY zur Nachrüstung quarzbestückter 2-m-TRX
- KW-DX an der Grasnarbe mit K1JTs Software WSPR
- 9L1X: Tausende QSOs von der Insel Sherbro

erscheint am 24.2.2009

Moxon-Beams aus Draht

Der Moxon-(G6XN-)Beam ist ein 2-Element-Richtstrahler aus Strahler und Reflektor, bei dem zur räumlichen Verkleinerung die Elemente zurückgefaltet werden. Diese Konstruktion weist einige Vorzüge und Besonderheiten auf. Im Beitrag werden Aufbauvarianten für die Bänder von 6 m bis 30 m vorgestellt, die auf einem ggf. abgespannten Traggerüst aus Angelruten basieren. Foto: DK7ZB

Keine Kompromisse. DSP-Transceiver TS-2000 mit Satellitenmodus und DX-Cluster.

Mit den neuen DSP-Transceivern der TS-2000-Familie stellt Kenwood eine neue Leistungsklasse vor. Der kompakte Allmode Multibander (KW, 50/144/430 MHz und optional 1.200 MHz) ist in zwei Versionen verfügbar: als stationärer TS-2000 mit allen Bedienelementen an der Gerätefront und als TS-B2000 zum Betrieb über einen PC oder - im mobilen Einsatz - über ein abnehmbares Bedienteil. Doch ganz gleich, für welche Ausführung Sie sich entscheiden - beide Geräte überzeugen durch eine erstklassige Ausstattung und eine bisher nicht angebotene Funktionsvielfalt: So sorgt einer der schnellsten ZF-DSP (100 MIPS = Millionen Instruktionen pro Sekunde), ein Auto-Notch und AGC für beste Empfangsverhältnisse. Dazu bietet der TS-2000 einen NF-DSP mit manuellem Beat Cancel, eine automatische Abstimmung bei CW-Betrieb, einen TX/RX-Equalizer und eine Rauschunterdrückung, Dabei ermöglicht der Allmode-Multiband-Transceiver einen gleichzeitigen Empfang von zwei Bändern, wobei der Subempfänger in den Betriebsarten AM und FM im VHF/UHF-Bereich arbeitet. Und der weltweit erstmalig in einem Amateurfunk-KW-Transceiver integrierte TNC ermöglicht eine DX-Cluster-Empfang direkt im Display.

Ausstattungsmerkmale:

■ Satellitenmodus ■ DX-Cluster RX mit automatischer QSY-Funktion ■ Sendeleistung: 100 Watt bei KW, 50 MHz und 144 MHz, 50 Watt bei 430 MHz, 10 Watt bei 1.200 MHz ■ gleichzeitiger Empfang von 2 Bändern in folgenden Kombinationen: KW + VHF oder UHF, VHF + VHF, UHF + UHF oder VHF + UHF ■ integrierter 1200/9600 bps-TNC ■ integrierter automatischer Antennentuner (KW und 6 m) ■ TX-Audio-Shaping ■ TXCO (±0,5 ppm Frequenzstabilität) ■ manueller Beat-Cancel ■ zusätzlicher Anschluss für eine RX-Low Band-Antenne ■ programmierbare Funktionstasten ■ DRF-Pegelregler ■ automatische Simplex-Überwachung ■ automatische Relaisablage ■ eingebauter Keyer ■ Noise Blanker ■ Abschaltautomatik ■ Quick CW TX ■ programmierbare Suchlaufgeschwindigkeit ■ 300 Kanalspeicher ■ hintergrundbeleuchtetes Bedienpanel

Optionales Zubehör:

1.200-MHz-Allmode-Einheit UT-20, Bedieneinheit RC-2000, PC-Steuersoftware ARCP-2000 ■ kompatibel mit dem optionalen Digitalrecorder DRU-3A ■ Ansage der Tastenfunktionen über optionalen Sprachsynthesizer VS-3

Mehr zu diesen Geräten und zum umfangreichen Zubehör erfahren Sie bei Ihrem freundlichen Kenwood-Fachhändler. Er freut sich schon jetzt auf Ihren Besuch.

Die Kenwood-Kompetenz-Center:

Elektronik-Service Dathe 04651 Bad Lausick Telefon (03 43 45) 2 28 49 www.funktechnik-dathe.de

Difona Communication 63069 Offenbach/Main Telefon (0 69) 84 65 84 www.difona.de

RW-Elektronik GmbH

22089 Hamburg
Telefon (0.40) 20.10.15
eMail: wellradio@compuserve.com

Funktechnik Böck

A-1060 Wien Telefon ++43 (1) 597 77 40 www.funktechnik.at

Fritz Höhne 44807 Bochum-Gr

Telefon (02 34) 59 60 26 www.hoehne-funk.de

Altreda

CH-8048 Zürich Telefon ++41 (0) 44 432 09 00 www.altreda.ch

Die Kenwood-Vertragshändler:

HD-Elektronik Kreßberg 74594 Kreßberg Telefon (0 79 57) 87 87 www.hd-elektronik.de

Haro-electronic 89331 Burgau Telefon (0 82 22) 4 10 05-0 www.haro-electronic.de

Hans Entner 94339 Leiblfing Telefon (0 9427) 90 20 86 eMail: Entner-DESRJ©t-online de

Peter Maas Funkelektronii 50189 Elsdorf-Berrendorf Telefon (0 22 74) 93 87-0 www.maas-elektronik.com

Dieter Knauer 96158 Frensdorf-OT Birkach

Telefon (095 02) 2 12

Kenwood Electronics Deutschland GmbH

www.kenwood.de

Rembrücker Straße 15 63150 Heusenstamm Telefon (0 61 04) 69 01-0 Fax (0 61 04) 69 01 539

▼ Die Digitalisierung der Welt kommt rasant voran und revolutioniert alle Bereiche der Kommunikation.

D-STAR ist eine seit Jahren von Icom unterstützte Technologie, die den VHF/UHF-Amateurfunk verändern wird. Weil wir davon überzeugt sind, lässt sich unser neuester FM-Dualband-Mobiltransceiver mit der optionalen Digitaleinheit ausrüsten, die Ihnen die Welt der digitalen Sprach- und Low-Speed-Daten-kommunikation erschließt. Im Digitalmodus können Sie Stationen nicht nur gezielt anrufen sondern über D-STAR-Repeater, deren GHz-Links und Internet-Gateways, auch Kontakte über große Entfernungen herstellen.

Zusätzlichen Nutzen bringt ein GPS-Empfänger, mit dem sich die Positionsdaten des eigenen QTHs ermitteln und bei Bedarf mit jedem Drücken der PTT-Taste an die QSO-Partner übertragen lassen. Im Digitalmodus haben Sie außerdem Zugriff auf einen flexibel einsetzbaren Sprachrecorder, der empfangene Anrufe aufzeichnen oder gezielt automatisch beantworten kann.

Aber auch unter analogen Gesichtspunkten hat der IC-E2820 einiges zu bieten. Der Sender erzeugt auf beiden Bändern in der höchsten Leistungsstufe 50 W HF. Empfangsseitig stehen zwei gleichzeitig nutzbare Receiver zur Verfügung. Eine separate Buchse dient dem Anschluss einer zweiten Antenne für den Diversity-Empfang – einer Funktion, die Sie vor allem beim Mobilbetrieb schätzen werden.

Weitere interessante Merkmale sind der erweiterte Empfangsbereich, das Bandskop, der hochstabile TCXO, das abgesetzt montierbare Bedienteil, der Schmalband-FM-Betrieb, das zum Lieferumfang gehörende Fernsteuermikrofon HM-133 und vieles mehr.

Am besten sehen Sie sich unseren neuen Dualbander bei einem unserer Fachhändler einmal genauer an. Dort erhalten Sie zudem nähere Informationen über die vielfältigen Möglichkeiten des D-STAR*- und GPS*-Betriebs und zum verfügbaren Zubehör.

IC-E2820

www.icomeurope.com

Icom (Europe) GmbH • Communication Equipment

 Infos: Himmelgeister Straße 100 · 40225 Düsseldorf · Germany Telefon (0211) 34 60 47 · Fax 33 36 39 · E-Mail info@icomeurope.com